

TABLE OF CONTENTS

About the El Paso Metropolitan Planning Organization	iv
Chapter 1: What is a Safety Action Plan	1
Introduction	1
National Roadway Safety Strategy Safe System Approach	1
What is the Purpose of the BSMP?	5
Chapter 2: Guiding the Borderplex Safe Mobility Plan	6
Introduction	6
Vision, Goals, and Objectives	6
Vision Statement	6
Goals and Objectives	7
Chapter 3: Community and Stakeholder Engagement	8
Introduction	8
How the Community was Engaged	8
Stakeholder Engagement	8
Transportation Project Advisory Committee (TPAC) Meetings	8
Safety Coalition Meetings	9
Countermeasures Focus Group	10
One-on-One Stakeholder Meetings	11
Outreach and Promotion	12
Social Media	13
Online Interactive Map	13
Dashboards	15
Community Survey	15
Pop-up Events	16
Community Meetings	17
Community Meeting 1	17
Community Meeting 2	20
Key Takeaways Overall	20
Chapter 4: State of Safety	21

Introduction	21
Safety Analysis	21
Data Sources	21
Methodology	21
Findings	22
High Injury Network Analysis	25
Data Sources	25
Methodology	25
Findings	26
High-Risk Network Analysis	30
Data Sources	30
Methodology	30
Findings	31
Vulnerable Road Users	33
Chapter 5: Safety Countermeasures Toolbox	35
Taking Action	35
Toolbox of Safety Countermeasures	35
Engineering Countermeasures	36
Enforcement Countermeasures	37
School Countermeasures	40
Emergency Response Countermeasures	42
Policy and Legislation Countermeasures	44
Chapter 6: Need Prioritization	46
Introduction	46
Prioritization Process	46
Municipal Priorities	59
Pilot Projects	76

Chapter 7: The Path to Zero	77
Introduction	77
Building a Culture of Safety	77
Needs to Projects	78
Funding Opportunities	79
Safety Integration	80
Legislative Coordination	85
Tracking Progress	86
Performance Measures	87
Crash Reduction Targets	89
Monitoring Tools	89
Reporting Progress	90
Continuous improvement	90

APPENDICES

Appendix A – Community Survey Results

Appendix B – Existing Conditions

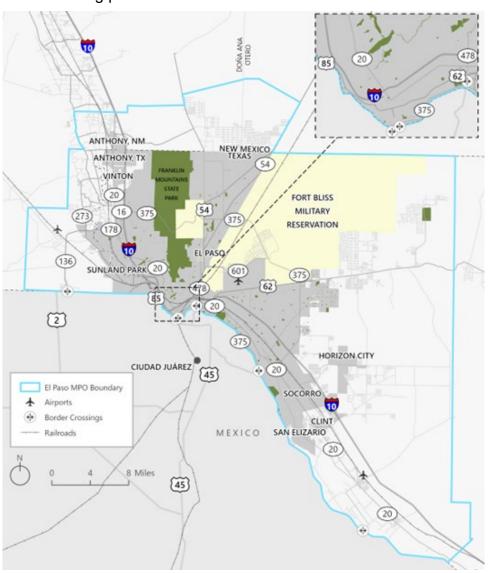
 $\label{eq:continuous} \mbox{Appendix C-High Injury Network}$

Appendix D – High Risk Network

Appendix E – Countermeasures Toolbox

Appendix F – Segment Priorities

Appendix G – Pilot Projects


Appendix H – Transportation Policy Board Resolution

ABOUT THE EL PASO METROPOLITAN PLANNING ORGANIZATION

The El Paso Metropolitan Planning Organization (EPMPO), is the federally designated Metropolitan Planning Organization of El Paso County, Texas, southern Dona Ana County, New Mexico, and a small portion of Otero County, New Mexico. The Metropolitan Planning Area (MPA) for the EPMPO is inclusive of the following municipalities in Texas: Anthony, Clint, El Paso, Horizon City, San Elizario, and Socorro and the following in New Mexico: Anthony and Sunland Park.

EPMPO's mission is to coordinate urban area wide multimodal transportation plans, involving the study of present transportation regional patterns. EPMPO leads collaborative planning initiatives for a connected, accessible, and sustainable transportation system for the MPA. EPMPO is the official policy body that is responsible for comprehensive regional transportation planning and support the coordination of decision-making processes.

INTRODUCTION

The El Paso Metropolitan Planning Organization (EPMPO) developed the Borderplex Safe Mobility Plan (BSMP), which is a plan tailored to the Metropolitan Planning Area (MPA) aimed at eliminating serious injury and fatal crashes across the transportation system. The BSMP has been funded by the Safe Streets and Roads for All (SS4A) Federal Grant Program, which supports regional, local, and Tribal initiatives through grants focused on preventing roadway death and serious injuries. The SS4A program is guided by the United States Department of Transportation (USDOT) National Roadway Safety Program and the Safe System Approach.

The BSMP is an action plan that is based on data analysis related to crashes, traffic patterns, and road conditions. The analysis pinpoints key roadway safety challenges, which then serve as the building blocks for developing specific programs and priority transportation improvements that address systemic as well as site-specific safety challenges present within the EPMPO region. The EPMPO acknowledges that a connected transportation network is an important component for supporting the growth of the region as well as supporting the needs of the community. The BSMP is an opportunity to identify and fill gaps within the roadway network, including bicycle, pedestrian, and transit to create safer travel options.

NATIONAL ROADWAY SAFETY STRATEGY SAFE SYSTEM APPROACH

The loss of even one human life is unacceptable. Between January 1, 2019, and December 31, 2023, approximately 112,697 crashes occurred in the MPA, with the greatest number of crashes, approximately 24,215, occurring in 2022. Of the total crashes during this period, approximately 1,287 were categorized as serious and 441 as fatal. Nationally, 2021 experienced the highest number of fatalities since 2005 where approximately 43,230 people died or were permanently injured, which is an increase of 18.4 percent compared to the first half of 2020.

In 2022, the USDOT released its National Roadway Safety Strategy, adopting a Safe System Approach as the core standard for addressing roadway safety. The Safe System Approach recognizes that humans will inevitably make mistakes and decisions that lead to or contribute to

crashes. This is why it becomes essential to work through an approach that focuses on building layers of roadway protection to prevent collisions and fatalities from occurring.

WHAT IS VISION ZERO?

Vision Zero is a global strategy aimed at eliminating all traffic fatalities and serious injuries. Its core principle is that no loss of life is acceptable on the road, emphasizing that road deaths are preventable and unacceptable.

The Vision Zero strategy focuses on solutions that create a transportation system that prioritizes safety for all road users, including pedestrians, cyclists, and motorists.

The Safety System Approach moves away from the conventional safety approach of modifying human behavior to prevent crashes and instead moves towards focusing on transformative system designs and motor vehicle technologies. It urges context-sensitive designs and countermeasures to become the norm. Figure 1 highlights the key shifts between the traditional approach to safety versus the Safe System Approach. The goal is to proactively mitigate human mistakes and lessen the impacts of crash severity to save lives. for the Safe System Approach is closely aligned with Vision Zero principles, which aims to have zero traffic fatalities.

Figure 1. Traditional Versus Safe System Approach

TRADITIONAL APPROACH TO SAFETY	VS	SAFE SYSTEM APPROACH
Prevention of crashes	CRASHES	Prevention of fatal and serious crashes
Aims to address human behavior	O O BEHAVIOR	Recognizes humans make mistakes
Addresses traffic engineering elements	TRAFFIC	Aims to fix the transportation system
Limited consideration for disproportionate impacts of the network	©5 [©] NETWORK	Considers the roadway network as a whole

The Safe System Approach is depicted in Figure 2. Three components make up the Safe System Approach in its entirety, the approach, the principles, and the elements. The approach is the overarching term that houses all aspects of the Safe System and is depicted at the center.

Figure 2. Safe System Approach

The Safe System Approach revolves around six key principles shown in Figure 3.

Figure 3. Safe System Approach – Key Principles

DEATHS AND SERIOUS INJURY ARE UNACCEPTABLE

A Safe System Approach prioritizes the elimination of crashes that result in deaths and serious injuries.

HUMANS MAKE MISTAKES

People will inevitably make mistakes and decisions that can lead or contribute to crashes. The transportation system can be designed and operated to accommodate certain types and levels of human mistakes and avoid death and serious injuries when a crash occurs.

HUMANS ARE VULNERABLE

Human bodies have physical limits to tolerate crashes before death or serious injury occurs. It is critical to design and operate a transportation system that is human-centric and accommodates physical human vulnerabilities.

RESPONSIBILITY IS SHARED

All stakeholders are vital to preventing fatalities and serious injuries.

SAFETY IS PROACTIVE

Proactive tools should be used to identify and address safety issues in the transportation system, rather than waiting for crashes to occur and reacting afterwards.

REDUNDANCY IS CRUCIAL

Reducing risks requires that all parts of the transportation system be strengthened so that if one part fails, the other parts still work to protect people.

The implementation of the Safe System Approach is arranged around five elements, each corresponding to the overarching goal. The elements are shown as the second ring in Figure .

Together, the principles and elements help build a holistic approach to roadway safety across an entire transportation system.

WHAT IS THE PURPOSE OF THE BSMP?

The EPMPO recognizes that investing in community safety is as equally important as investing in mobility infrastructure to support the future growth and sustainable development of the MPA. The purpose of the BSMP is to have implementable and measurable actions that prioritize strategies, programs, and infrastructure projects that are focused on continually reducing and ultimately eliminating fatal and serious injury crashes. The BSMP is intended to establish a new status quo in roadway safety, both in the present and the future.

The BSMP was developed in five steps as shown in Figure with public and stakeholder engagement at key points throughout the process.

Figure 4. BMSP Development Process

VISION, GOALS, AND OBJECTIVES

DATA ANALYSIS

COUNTER-MEASURES

EVALUATION AND MONITORING

FINAL PLAN

STAKEHOLDER AND PUBLIC INVOLVEMENT

INTRODUCTION

Guiding the BSMP is a defined vision statement and a set of goals and objectives to achieve that vision for regional transportation safety. Prior to defining the vision, goals, and objectives, existing plans, programs, and studies were inventoried and reviewed to define the regional state of practice of transportation safety planning.

VISION, GOALS, AND OBJECTIVES

EPMPO worked with stakeholders across the region to envision a bold and transformative change for the transportation system – one that improves safety for all road users. Achieving a safer regional transportation system requires leadership to prioritize key challenges, with a focus on physical engineering and non-engineering efforts, including enforcement, emergency response, policy and legislation, and school-related measures. The vision, goals, and objectives for the region are described in the following sections.

Vision Statement

To arrive at the desired outcome for a safer regional transportation system, a vision statement was developed to help keep efforts aligned, drive long-term commitment, and implement change. The vision statement below was informed by extensive data analysis and stakeholder and community input described in this plan.

THE REGIONAL SAFETY VISION

EPMPO commits to utilizing the Safe System Approach to continually reduce and ultimately eliminate fatal and serious injury crashes on our transportation system through planning, design, and maintenance.

Goals and Objectives

Goals and objectives were developed to help reach the vision identified by the region. Together, they outline the big-picture efforts needed to work towards reducing, and ultimately eliminating, fatal and serious injury crashes. The goals and objectives for the plan were informed by extensive data analysis, as well as feedback received from stakeholders and members of the community. Table 1 highlights the final goals and objectives identified for delivering this Plan.

Table 1: Goals and Objectives

COMIC	OD IECTIVES
GOALS	OBJECTIVES
Safety. Create an environment in which people of all ages and abilities feel confident and comfortable travelling.	 Continually reduce, and ultimately eliminate, the number of fatalities, serious injuries, and cycling and pedestrian-related crashes by half in 2035 and by zero in 2050 through implementing safety countermeasures.¹ Eliminate fatalities, serious injuries, and cycling and pedestrian-related crashes by advancing transportation investments that prioritize safe and efficient mobility of all roadways. Design a transportation network that improves safety for all roadway users by implementing proven safety countermeasures systemically.
Accessibility. Provide an efficient and safe transportation system for all roadway users, regardless of race, income, location, and socioeconomics.	 Prioritize implementation of safety countermeasures along the regional High Injury Network (HIN) and High-Risk Network (HRN). More information about the HIN and HRN can be found in Chapter 4. Engage with all populations and communities to provide transportation and mobility benefits across the region. Implement safety countermeasures in areas of community need to reduce fatalities and serious injuries.
Culture . Promote a culture of safety and care for all roadway users.	Collaborate with community groups, stakeholders, and partner agencies to implement education and enforcement strategies that promote and prioritize roadway safety.
<i>Implementation</i> . Implement a proactive approach for safety countermeasures for all multimodal transportation initiatives.	 Identify needs through data-driven and community-driven approaches to advance the implementation of safety countermeasures across the region. Leverage innovation and technology to implement safety countermeasures.

¹ Based on the Texas Transportation Commission's Road to Zero goal issued in 2019 under Minute Order #115481

INTRODUCTION

Community and stakeholder engagement played a pivotal role informing the development of the BSMP. At key milestones of plan progress, feedback was collected from stakeholders and the public. This chapter describes the ways in which the community and stakeholders were engaged through the development of the BSMP in addition to summarizing the key feedback that was received.

HOW THE COMMUNITY WAS ENGAGED

Engagement throughout the BSMP development occurred at three levels: stakeholder engagement, regular outreach and promotion, and community meetings.

STAKEHOLDER ENGAGEMENT

The development and progress of the BSMP was guided by two stakeholder bodies: The EPMPO Transportation Project Advisory Committee (TPAC) and the Safety Coalition. These two bodies offered feedback on the milestones of the plan's progress. Information and plan progress was shared and vetted with the TPAC and Safety Coalition prior to broadcasting to the community and public.

Transportation Project Advisory Committee (TPAC) Meetings

TPAC is a standing advisory committee consisting of subject matter experts and staff from the MPO as well as partner agencies. The objective of TPAC is to review and make recommendations to the Transportation Policy Board (TPB) for transportation planning initiatives, such as the BSMP. For the BSMP, TPAC was engaged to inform the development of the Plan, utilizing their technical expertise, local knowledge, and ability to strategically direct communication, political involvement, and public buy-in for the plan. Over the course of developing the BSMP, TPAC was engaged during the Committee's regular monthly meetings on the following dates:

- October 2024
- March 2025
- August 2025

Safety Coalition Meetings

The Safety Coalition was a stakeholder advisory group that was specifically formed to guide the development of the BSMP. The Coalition was comprised of a wide range of stakeholders, including members of the Vision Zero Steering Committee from the City of El Paso, state departments of transportation, and representatives from municipalities throughout the MPA. Other stakeholders included representatives from independent school districts, emergency services, health departments, cyclist and pedestrian advisory groups, amongst others. The role of the Coalition members included the responsibilities shown in Figure 5.

Figure 5. Safety Coalition Member Responsibilities.

PLAN AMBASSADOR

Educate others about the plan and how the plan can help the region.

PARTICIPATION AND COLLABORATION

Provide input and help direct the planning process to reflect communities across the region.

SPREAD THE WORD

Share information about community engagement opportunities and encourage others to participate.

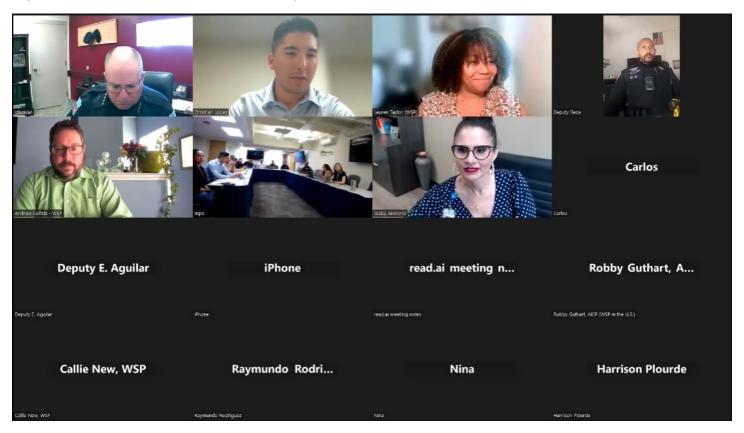
Over the duration of the BSMP, four (4) Safety Coalition Meetings were held virtually on the following dates.

- Safety Coalition Meeting 1: September 16, 2024
- Safety Coalition Meeting 2: February 24, 2025
- Safety Coalition Meeting 3: June 3, 2024
- Safety Coalition Meeting 4: September 10, 2025

Figure 6. Image of a Safety Coalition Meeting

Countermeasures Focus Group

To inform the development of safety and enforcement countermeasures, a Countermeasures Focus Group was convened in August 2025 with participation from law enforcement, school district safety officials, university campus safety officials, and other transportation safety stakeholders across the region. The focus group was held in a hybrid format with participation both in-person and online via the Zoom platform. A screenshot from the focus group is included in Figure 7. The discussion centered on identifying effective and ineffective safety and enforcement strategies, funding challenges, and priority areas of need.


Participants of the focus group emphasized the success of Pedestrian Hybrid Beacons (PHB) and High Intensity Activated Crosswalks (HAWK) signals, particularly near schools and university campuses, citing reduced crashes and improved compliance. One participant noted, "We have not had a pedestrian involved accident since HAWK lights were installed" on the University of Texas at El Paso campus. Low-cost interventions such as speed bumps and clear pedestrian pathways were also highlighted as effective. One participant noted that "Sometimes the best solutions are not the most

high tech, sometimes they are basic". Educational programs like "Shattered Dreams" and interactive workshops were praised for their impact on youth behavior and community awareness.

Persistent challenges identified during the discussion included staffing shortages, poor roadway lighting (especially on corridors like McCombs Street), and traffic congestion in school zones. One participant noted, "We need more illumination, some of these streets are terrible at night". Construction zones and driver behavior during inclement weather were identified as high-risk areas requiring targeted interventions. Stakeholders also advocated the expansion of the TxDOT Highway Emergency Response Operator (HERO) program and reassessing School Zone Crossing Assemblies to improve safety outcomes. The feedback received during the focus group was utilized to validate and inform safety and enforcement countermeasures that are most effective contextually for the El Paso region.

Figure 7: Countermeasures Focus Group

One-on-One Stakeholder Meetings

To gather individual perspectives from stakeholders and inform the recommendations of the BSMP, the EPMPO undertook a series of targeted one-on-one meetings with key stakeholder groups to ensure the plan reflects the diversity of safety needs and operations realities across the region. These

consultations were focused on gathering qualitative insights to inform the prioritization an implement of safety countermeasures eligible for SS4A grant funding. Stakeholder included:

- **Fire Departments**: Discussions centered on emergency response challenges, infrastructure needs such as emergency turnarounds and helipad access, and the potential for bus lanes and signal pre-emption to improve response times.
- Independent School Districts (ISDs), Colleges, and Universities: These sessions explored school travel safety, infrastructure gaps, and programmatic needs including Safe Routes to School, crossing guard programs, and sidewalk and bike rack improvements.
- Law Enforcement Agencies: Conversations addressed enforcement strategies, crash trends, impaired driving, community engagement, and internal capacity building to support traffic safety.

This individualized outreach allowed the EPMPO to better understand the unique perspectives and priorities of each stakeholder group, ensuring that the Safe Mobility Plan is grounded in local context and responsive to community needs.

OUTREACH AND PROMOTION

The EPMPO employed a variety of methods to keep the public regularly informed and engaged for the BSMP. Promotional materials to provide regular outreach to the community included social media posts, postcards, informational flyers, e-blasts, press releases, and press interviews. Several outreach materials were provided in both English and Spanish.

Social Media

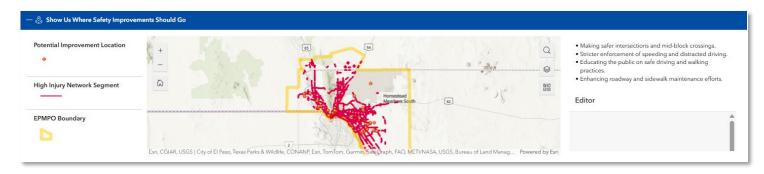
Figure 8. Social Media Advertisement in Spanish.

Social media was regularly used for continuous engagement of the community across the region. Social media posts promoting the BSMP generally and for specific events such as pop-ups and community meetings were posted across four platforms: Facebook, Instagram, Twitter, and NextDoor. Members of the Coalition as well as other plan partners utilized their social media platforms to help promote the plan and related activities. In particular, the assistance of @therealfitfamelpaso was critical in posts encouraging participation in the plan survey. Figure 7 provides an example of social media posted online.

Online Interactive Map

The BSMP website provided an opportunity for public feedback via an interactive web map, allowing users to pinpoint certain areas of concern and issues associated with those specific areas, and elaborate on these concerns via a comment feature. Figure 8 provides a screen capture of the online interactive map, and Figure 9 shows a sample of a specific location where improvements were identified with dots of various colors that correlated with specific types of concerns.

Figure 9. Online Interactive Map



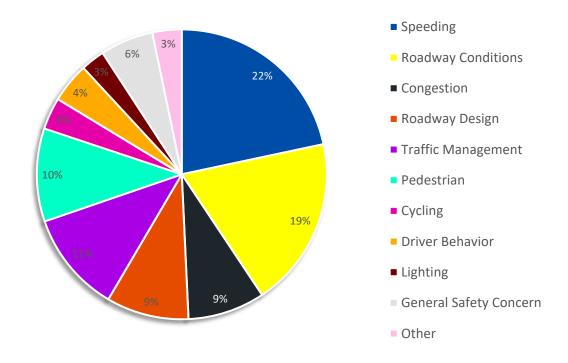


Figure 10. Sample Location of Interactive Map

Feedback was collected between October 16, 2024, and November 22, 2024. The interactive website provided further insight into the safety concerns of the public, with 345 comments submitted. The comments covered multiple topics and are shown, with their respective percentages in Figure 10.

Figure 11: Summary of Feedback from Online Interactive Map

The most common comments pertained to speeding (22%) and roadway conditions (19%), followed by traffic management (11%) and pedestrian safety concerns (10%). To better understand the safety concerns within the Borderplex region the comments received were refined to each precinct within the County.

Dashboards

Dashboards were utilized to provide data to the community in a manner that was accessible and digestible for public consumption. Crash data, including the High Injury Network and High-Risk Networks (discussed further in Chapter 4) were visualized on ESRI map-based dashboards embedded within the BSMP website (see Figure 11). The dashboards and maps allowed the community to interact with the data and see how crashes affect their neighborhoods and the region in its entirety.

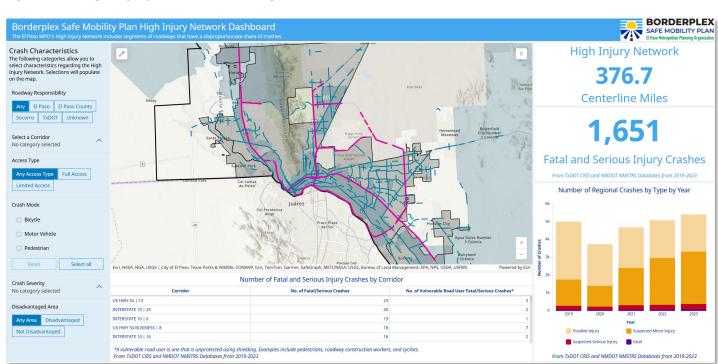


Figure 12. High Injury Network and High-Risk Network Dashboard.

Community Survey

The purpose of the survey was to gather public perceptions and experiences related to traffic safety within the EPMPO region. The survey consisted of seven questions that focused on the impacts of traffic safety amongst road users and eight questions focused on demographics for a total of 15 questions. The online version of the survey included a map-based questionnaire that allowed users to identify specific locations in the region where they had safety concerns.

The survey was launched on February 24, 2025, following the Safety Coalition Meeting and remained open for 56 days. The survey closed on April 21, 2025, with a total of 812 responses collected.

To ensure accessibility and inclusivity, the survey was offered in both English and Spanish, in both online and paper hard copy formats. The online version was hosted through ESRI's Survey123, providing a user-friendly platform for respondents. Of the total 812 responses received, 98 completed paper format surveys were received in English, and 39 completed paper format surveys were received in Spanish. The results of the survey directly inform the development of traffic safety strategies for the future of the El Paso MPO region.

Additional information regarding the survey results can be found in Appendix A.

Pop-up Events

Pop-up events were utilized to encourage the community to engage in the development of the BSMP and take the survey. The goal of the pop-up events was to meet community members where they were already. At these events, the EPMPO set up a table, and connected and encouraged individuals to take the survey by offering paper copies and/or a means to take the survey online. The pop-up events were attended by members of the public as well as local law enforcement and fire services with educational and promotional materials and topic-focused activities, such as driving under the influence (DUI).

The following pop-up events were held to engage the public to participate in the survey and showcase the high injury network maps:

- 1 Saturday, March 15, 2025, at University Medical Center (UMC) Foundation of El Paso Health Car Seat Safety Program (El Paso County Coliseum, 4100 East Paisano Drive, El Paso, Texas 79905)
- 2 Monday, March 17, 2025, at the El Paso Neighborhood Coalition Meeting at the Blue Flame (304 Texas Avenue, El Paso, Texas 79901)
- 3 Tuesday, March 18, 2025, at Podium Finish (1400 Texas Avenue, El Paso, Texas 79901)
- 4 Wednesday, March 19, 2025, at Presidio Hall (12339 Socorro Road, San Elizario, Texas 79849).
- 5 Thursday, March 20, 2025, at Sunland Park Sports Complex (4700 McNutt Road, Sunland Park, Texas 88063)
- 6 Saturday, March 22, 2025, at Univision Health Fair at Bassett Place (6101 Gateway Boulevard West, El Paso, Texas 79925)
- 7 Saturday, March 29, 2025, at La Wheela (11950 Montana Avenue, El Paso, Texas 79936)
- 8 Saturday, April 5, 2025, at Oz Glaze Senior Center (13969 Veny Webb Street, Horizon City, Texas 79928).

COMMUNITY MEETINGS

Two Community Meetings were held during the BSMP development at key milestones to share updates on the planning process and collect community feedback.

Community Meeting 1

Community Meeting 1 was held Wednesday, October 16, 2024, from 5:30 PM to 7:00 PM at MacArthur PK-8 School (8101 Whitus Drive, El Paso, Texas 79925). The community meeting was an open house format where the public could learn about the BSMP at their own pace, ask questions to subject-matter experts, and provide feedback on the perceptions and experiences with roadway safety concerns (see Figure 12).

To boost community engagement, the EPMPO collaborated with the City of El Paso Climate Action Plan by holding a joint community meeting. This enabled community members to attend both events without leaving the building. The EPMPO collaborated with local organizations — including La Wheela, the University Medical Center (UMC) Foundation and the UMC Trauma Services — to provide bike checks, Halloween safety tips for pedestrians, and car seat safety inspections and tips. Overall, approximately 45 participants attended Community Meeting 1.

Figure 13. Community Meeting 1 Photos.

PROMOTIONAL STRATEGIES

Various promotional strategies were implemented to raise public awareness about the first community meeting. A press conference was held on Saturday, October 12, 2024, from 12:00 to 1:00 PM at Gallegos Park (7361 Bosque Road, Canutillo, Texas 79835) to promote the BSMP and encourage public attendance. This location was selected to highlight the regional focus of the BSMP, setting it apart from Vision Zero, the City of El Paso's plan which focused on city roads only. The MPA for the EPMPO includes all cities and unincorporated areas of El Paso County and portions of Otero and Doña Ana counties. Gallegos Park was chosen to encourage maximum media attendance from all three counties. The press conference was covered by multiple media outlets, including KVIA, KTSM and KDBC (see Figure 13). Additionally, social media advertisements were placed on Instagram and Facebook, while posts were made on LinkedIn, Twitter, Facebook and Instagram. A press release was also distributed to all media outlets.

Figure 14. Community Meeting 1 Press Conference. White flags were marked at the site of the press conference to represent the traffic-related fatalities in the region.

WHAT WE HEARD

Community Meeting 1 garnered 25 comments from attendees as well as input regarding the existing conditions of pedestrian and bicycle infrastructure in the region. The comments were inventoried, and four primary themes emerged as shown in Figure 14.

Figure 15. Community Meeting 1 - What We Heard.

Improved Infrastructure for Cyclists and Pedestrians

Participants highlighted the need for improved infrastructure for cyclists and pedestrians, emphasizing the importance of better signage, protected bike lanes, dedicated walking paths, pedestrian beacons and physical barriers. Suggestions included enhancing sidewalk conditions, maintaining bike lanes and ensuring consistent, visible road markings to improve safety and accessibility.

Public Awareness and Education

Participants emphasized the need for greater public awareness and education to enhance road safety. They suggested increasing educational efforts around road rules, particularly regarding commercial vehicles, roundabouts and shared paths. Utilizing social media and educational tools was suggested to promote safe behaviors among drivers, cyclists and pedestrians.

Enforcement

Participants highlighted the critical role of law and safety enforcement on roads. The need for increased enforcement in high-risk areas, such as roundabouts and busy pedestrian zones, to improve public safety was emphasized.

Safety Enhancements and Traffic Management

Participants highlighted the need for improved lighting in dark areas, adding traffic calming measures such as speed bumps, roundabouts and upgrading intersections. Participants advocated for a systemic approach to road safety, which includes addressing road designs and parking.

Community Meeting 2

TBD

Key Takeaways Overall

TBD

INTRODUCTION

Understanding the state of safety is critical in determining existing conditions that may need to be addressed. To determine the state of safety, crash data was collected and analyzed, a high injury network (HIN) was established, and the high-risk network (HRN) was identified. The following sections provide detailed information on the safety analysis, HIN, and HRN.

SAFETY ANALYSIS

Data Sources

The source of data for this analysis is crash data from the Texas Department of Transportation (TxDOT) Crash Records Inventory System (CRIS) and the New Mexico Department of Transportation (NMDOT) Statewide Traffic Records System (STRS) from 2019 to 2023. The most recent year for data availability between TxDOT CRIS and NMDOT STRS is 2023. Any discrepancies between the datasets were addressed by making reasonable assumptions to align them as accurately as possible. Only crashes within the MPO study area were included in the analysis.

Methodology

The safety analysis was conducted by compiling crash records within the El Paso MPO boundary in tabular format from the years 2019 to 2023. Crash locations were mapped using ArcGIS to identify "hotspots," or areas with multiple crashes, within the study area. Crash characteristics were also examined, such as crash severity, bicycle and pedestrian involvement, time of day, day of the week, weather conditions, alcohol and drug involvement, and costs.

Findings

The EPMPO region experienced an average of 22,253 annual crashes from 2019-2022, peaking in 2022 with 24,215 crashes, as shown in Figure 15. Crash hotspots were identified along major corridors such as I-10, SH 20, US 62, Loop 375, US 54, and US 85, as shown in Figure 15. Over the 2019-2023 five-year period, 0.4% of crashes (441) were fatal and occurred mainly in urban areas and along major corridors. Over 12,000 crashes (or 11.1%) occurred with possible injury, over 10,000 (9.6%) with minor injuries, and over 1,000 (1.1%) with serious injuries, as shown in Table 2. The majority of crashes that occurred over the five-year period, 75,832 or 67.3%, resulted in no injuries. Not depicted in Table 2 are the 11,899 (10.6%) of crashes that had unknown severity.

In total, over 1,600 crashes involved bicyclists and pedestrians. These occurred along major arterials and within the city of El Paso. Crash injuries resulted in over \$4.9 billion in societal costs², with serious and fatal crashes accounting for 44% of the costs. For additional information including crash characteristics and contributing factors refer to Appendix B.

2

² This analysis uses the *Guide to Calculating Costs* developed by the National Safety Council (NSC) to quantify costs as a measurement of dollars spent and income not received due to injuries and fatalities.

Figure 16: Total Crashes by Year

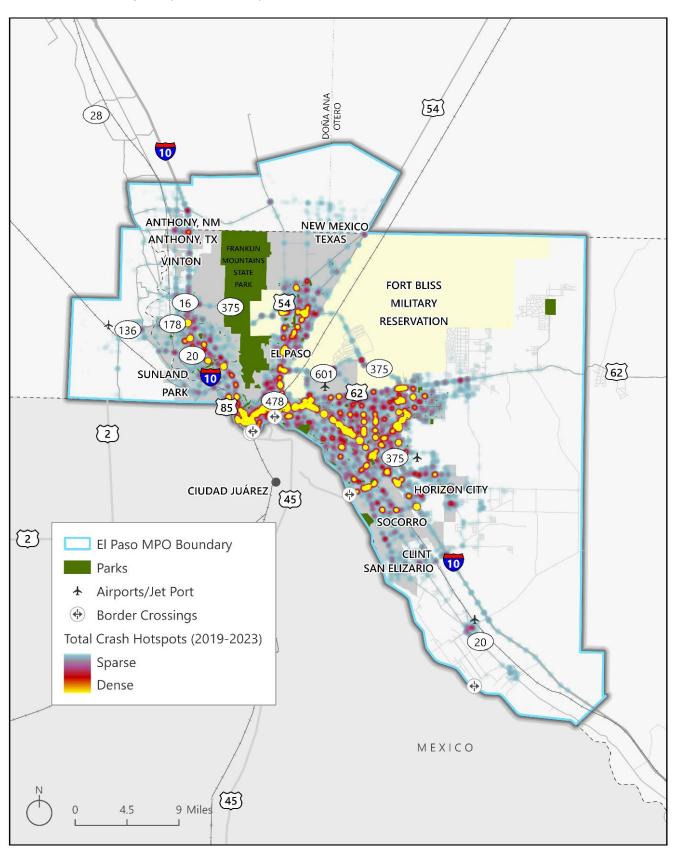



Table 2: Crash Severity Counts by Year

Crash Severity	2019	2020	2021	2022	2023	Total
Possible Injury Crash	3,366	2,410	2,337	2,175	2,169	12,457
Minor Injury Crash	1,545	1,216	2,196	2,758	3,066	10,781
Serious Injury Crash	234	192	256	286	319	1,287
Fatal Injury Crash	82	76	97	89	97	441
No Injury	16,186	12,367	15,376	16,364	15,539	75,832
Total	21,413	16,261	20,262	21,672	21,190	100,798

Figure 17: Crash Hotspots (2019 - 2023)

HIGH INJURY NETWORK ANALYSIS

The primary purpose of developing a High Injury Network, or HIN, is to serve as a guide for city planners, policymakers, and traffic engineers to prioritize infrastructure improvements, enforcement, and educational campaigns. The usefulness of an HIN lies in its ability to focus limited resources on the most problematic areas, thereby maximizing the impact of safety measures. The implementation of an HIN is a crucial step towards reducing traffic-related injuries and moving closer to the ideals articulated in the BSMP Vision Statement to reduce, and ultimately eliminate traffic, fatalities and severe injuries. The full analysis conducted for the HIN can be found in Appendix C.

Data Sources

The sources used to determine the HIN included data from the TxDOT CRIS and NMDOT STRS covering the 5-year period from 2019 to 2023. The analysis focused on streets within the Metropolitan Planning Area (MPA) of the EPMPO, including Full Access Facilities and Limited Access Facilities. For this task, all divided roadways were consolidated into single line features. Subsequently, crash data were joined with corresponding roadway segments.

Methodology

Crash severity was determined using the KABCO Injury Classification Scale Definitions for the states of Texas and New Mexico, as developed by the FHWA. This analysis included all crashes that caused Fatalities (K), Suspected Serious Injuries (A), or Suspected Minor Injuries (B). In this scale, K stands for "Killed – Died" due to injuries sustained from the crash within 30 days of the crash, and A stands for "Incapacitating Injury – Severe Injury" which prevents continuation of normal activities; includes broken or distorted limbs, internal injuries, crushed chest, etc. To focus on crashes that caused severe outcomes, this analysis applied a twelvefold increase in weight for crashes resulting in fatalities or severe injuries (referred to as KA crashes for the purposes of this study), while minor injury crashes were not given additional weight. This severity weighting is based on the economic cost of crashes in the TxDOT HSIP guidance. Road segments were then screened by weighted crash score per mile. Corridors with the highest weighted crash score per mile are identified as part of the HIN. These corridors were delineated at logical breakpoints, typically at intersections.

The analysis adopted a multimodal perspective, examining and mapping the HIN across different networks:

- Vehicle Based on crashes only involving motor vehicles, trucks, freight/heavy vehicles;
 broken down by full access and limited access facilities.
- Pedestrian Based on pedestrian-involved crashes.
- Bicycle Based on bicycle-involved crashes.

Findings

There are 339 miles of local roads with full access (e.g., major arterials), and 107 miles of limited-access facilities (e.g., interstates) identified as HIN corridors, making up 8% of local roads and 57% of limited-access facilities, respectively. Examples of limited-access HIN corridors include US Highway 54 and Interstate 10; examples of full-access HIN corridors include State Highway 20 and N. Resler Dr. The HIN is shown in Figure 8.

Despite representing a relatively small portion of total road centerline miles, HIN corridors account for 75% of KA crashes on full-access facilities and 93% on limited access facilities. The HIN segments on the full-access facilities are 9.3 times more likely to experience KA crashes compared to the system-wide average, while HIN segments on limited-access facilities are 1.6 times more likely.

The concentration of KA crashes is even more pronounced on pedestrian and bicycle HINs. Pedestrian HIN segments comprise only 2% of total road centerline miles, but account for 66% of pedestrian KA crashes. Similarly, approximately 77% of bicycle KA crashes occurred on only 1% of total roadway centerline miles. The HIN for pedestrian and bicycle facilities is shown in Figure 17.

For a comparison of characteristics of the HIN by full access, limited access, pedestrian, and bicycle facilities, refer to the summary shown in Table 3.

Table 3: High Injury Network Statistics Summary

Network	Total Road Centerline Miles	HIN Miles	% of Network	KA Crashes	HIN KA Crashes	HIN KA Crash %	KA Rate	HIN Relative Crash Concentration
Vehicle Full Access Facilities	4,167	339	8%	1,147	865	75%	3.4	9.3
Vehicle Limited Access Facilities	188	107	57%	495	460	93%	4.6	1.6
Pedestrian	4,354	100	2%	266	175	66%	2.7	28.6
Bicycle	4,354	40	1%	35	27	77%	0.9	83.6

Figure 18: High Injury Network - Full Access and Limited Access Facilities

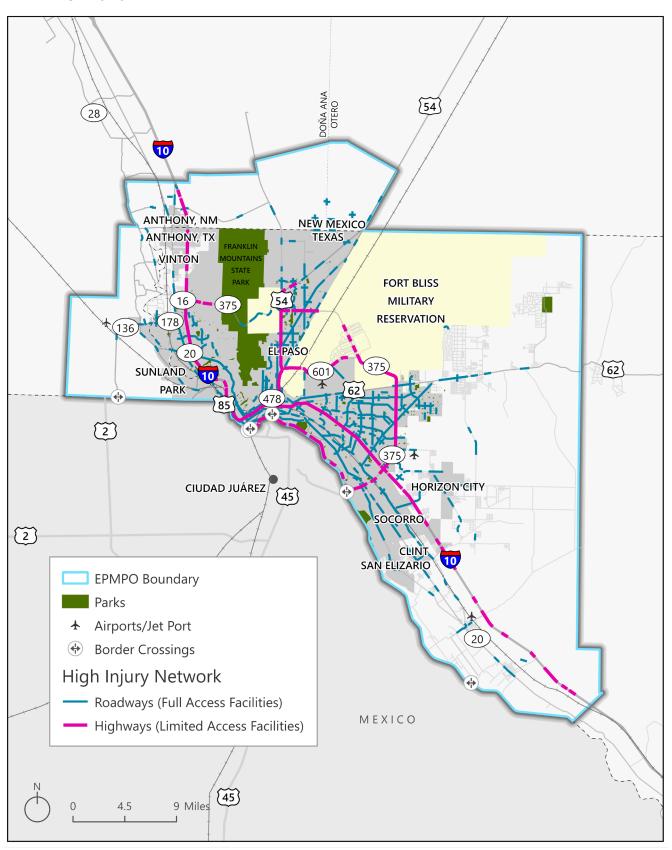
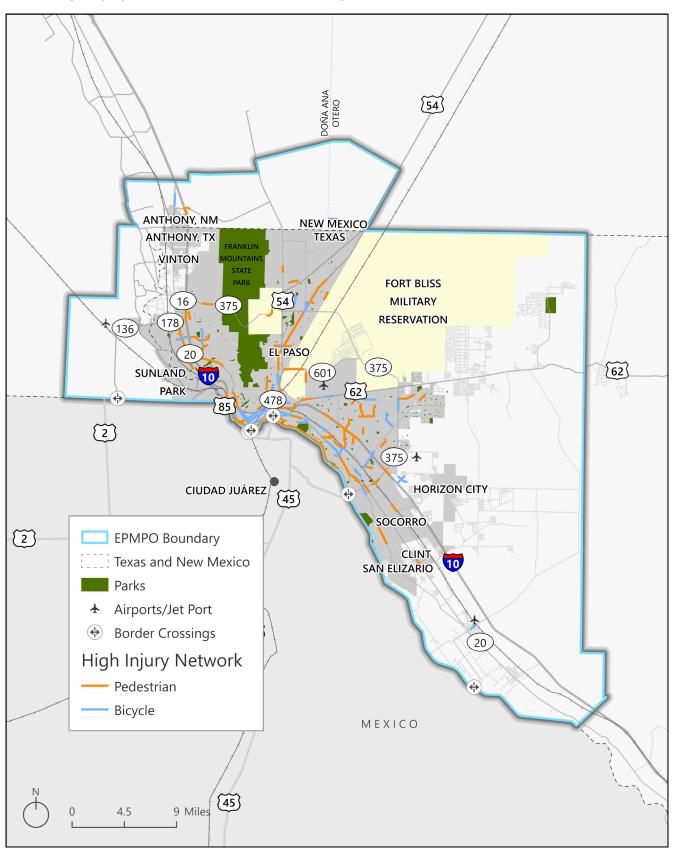



Figure 19: High Injury Network - Pedestrian and Bicycle Facilities

HIGH-RISK NETWORK ANALYSIS

A High-Risk Network, or HRN, focuses on identifying road corridors that are particularly vulnerable to future fatal and severe injury crashes. These vulnerabilities may arise from various attributes such as traffic volumes, speed limits, and the number of lanes for the overall roadway. Unlike the HIN, which is developed based on crash history, the HRN utilizes a Systemic Risk Analysis. The systemic risk analysis is a methodology that aims to identify the recurring safety concerns by analyzing crash profiles that are associated with a specific road.

The identification and analysis of HRNs are critical to decision-makers for prioritizing investments, enhancing network resilience, and developing contingency plans to mitigate potential risks. The purpose of developing an HRN for the EPMPO is to ensure efficient and reliable transportation networks for commuters and goods throughout the MPA. By understanding the characteristics and performance of the HRN, the EPMPO can move forward with recommending improvements, optimize response strategies, and provide a safer and more dependable transportation system. The full analysis for the HRN can be found in Appendix D.

Data Sources

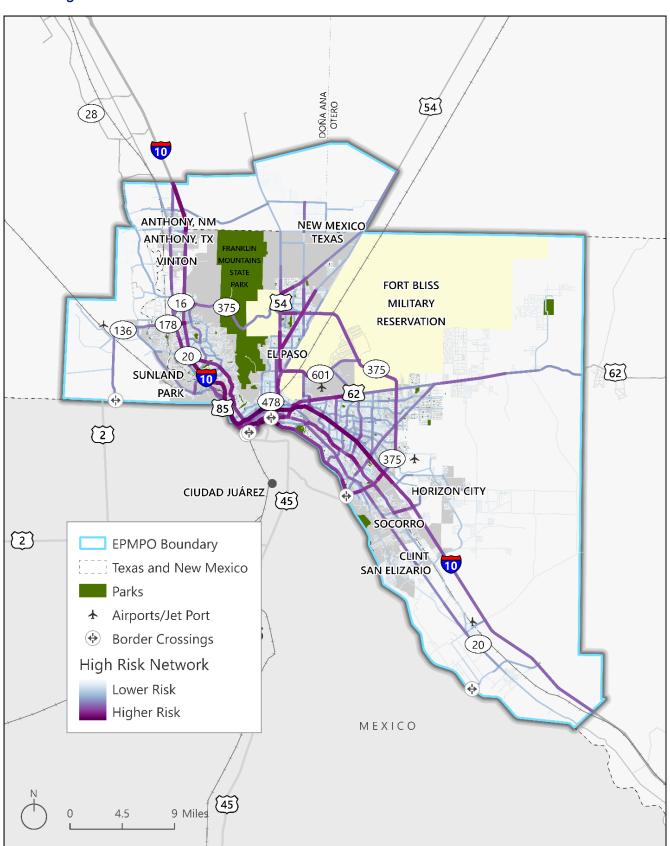
Roadway data used in the analysis is provided by TxDOT and NMDOT. Datasets from TxDOT and NMDOT were merged using Excel. Any discrepancies between the datasets were addressed by making reasonable assumptions to align them as accurately as possible. Demographic data was retrieved from the USDOT.

Methodology

The HRN is based on a systemic risk analysis methodology. The methodology is an approach that identifies risk factors across an entire transportation network by analyzing a series of roadway attributes.

- Functional Classification The classes that roadways are grouped into based on the service they are intended to provide.
- Annual Average Daily Traffic (AADT) The average number of vehicles that travel through a roadway segment in a year.
- Truck Annual Average Daily Traffic Percentage of annual average daily traffic that comes from truck travel.
- Speed Limits The maximum speed a vehicle may legally travel on a particular roadway segment.
- Number of Lanes The total number of travel lanes on a roadway segment.

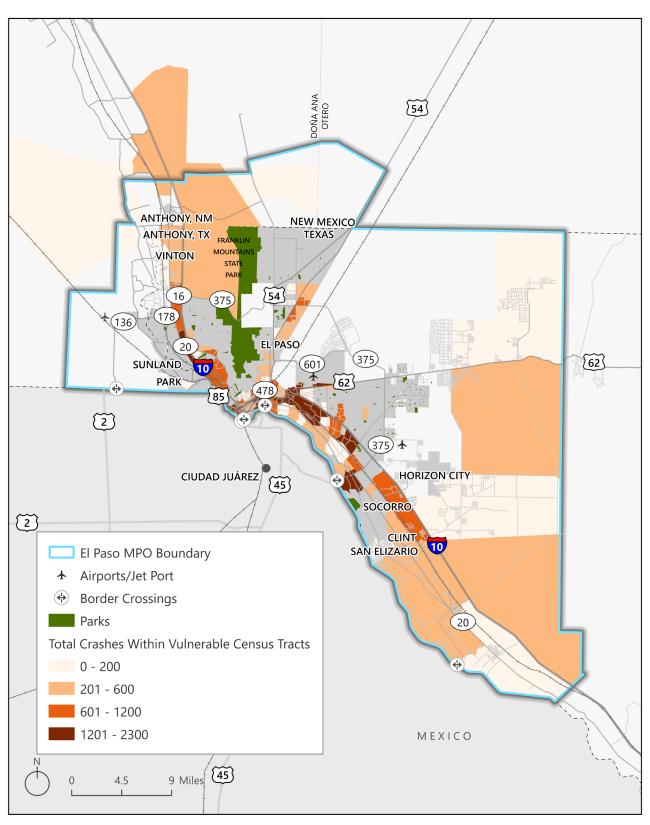
- Lane Widths The distance between travel lanes in a roadway segment.
- Census Tracts with Access Needs Defined by combining a series of indicators including, social vulnerability, health vulnerability, transportation insecurity, environmental burden, and climate and disaster risk burden.
- Bus Stops Designated bus stops for Sun Metro and South-Central Regional Transit District (SCRTD).
- Border Crossings Border Crossings within the EPMPO include Paso Del Norte Bridge, Good Neighbor Bridge, Bridge of the Americas, Ysleta Bridge, Tornillo-Guadalupe Bridge, and Santa Teresa.


The risk factor is a numerical representation of the potential safety risk associated with the attribute. Once the risk factor was determined, it was utilized as a basis to allocate a corresponding number of points to each attribute, reflecting its relative importance and impact on roadway safety. The total points for the attributes of a particular roadway segment resulted in a Risk Score, which serves as a quantitative measure of the overall safety risk for that segment of the roadway. A risk factor of less than 1x signifies a feature that is likely to decrease crashes compared to the region wide average, whereas a risk factor greater than 1x signifies a feature that is likely to increase crashes compared to the region wide average. This risk factor measure was utilized to develop the final risk score for roadway segments. A detailed over of the Systemic Risk Analysis Methodology, Risk Factors, and Findings can be found in Appendix D.

Findings

Risk Scores were computed for calculated individual roadway segment within the entire network. Figure 7 represents the HRN segments for the EI Paso MPO, with darker roads representing those with a higher risk score. As shown below, the HRN followed similar areas of concern as the HIN. The HRN showed higher risk along major corridors such as I-10, SH 20, US 62, Loop 375, Loop 478, US 54, and US 85. More information about the Risk Scores and HRN results can be found in Appendix D.

Figure 20: High Risk Network



VULNERABLE ROAD USERS

The USDOT has identified several vulnerable census tracts within EPMPO. Vulnerable census tracts combine a range of social vulnerability, health vulnerability, transportation insecurity, environmental burden, and climate and disaster risk burden. An online tool offered by the USDOT provides a way to identify places and communities who bear a disproportionate burden based on historical investments or disinvestments. The EPMPO includes 97 vulnerable census tracts and 107 other census tracts that were not deemed vulnerable, for a total of 204 census tracts throughout Texas and New Mexico. As shown in Figure 10, vulnerable census tracts had a proportionate number of crashes and fatal crashes compared to other census tracts within the EPMPO area. Vulnerable census tracts had an average crash rate of 513.98 vs 566.21 for other census tracts. Vulnerable census tracts also had a 2.6 fatal crash average vs a 2.50 crash average for other census tracts.

Figure 21: Total Crashes Within Vulnerable Census Tracts

TAKING ACTION

To address the safety concerns stemming from the Data Evaluation presented in Chapter 4 of this Plan, safety countermeasures have been identified to address a variety of safety concerns. Countermeasures are actions, strategies, or technologies that are designed to reduce crashes with the vision of eliminating crashes. Over time, the culmination of implemented countermeasures should help make the transportation network safer and more accessible for all road users.

TOOLBOX OF SAFETY COUNTERMEASURES

A "toolbox" of safety countermeasures has been developed with strategies ranging from engineering and design solutions to law enforcement, emergency response, and initiatives that raise awareness about safe road behaviors related to school travel, pedestrians, and cyclists. These countermeasures help make the transportation network safer and more accessible for all road users across the region regardless of demographics, socioeconomic factors, or preferred travel method. With this toolbox, municipalities across the MPO region can tailor their approach to implementation in a way that meets the needs of their community, ensuring a holistic and effective implementation strategy towards roadway safety.

The toolbox has been developed by drawing upon a variety of proven sources, including the Federal Highway Administration (FHWA) Proven Safety Countermeasures, a scan of nationwide Safety Action Plans for best practices, as well as the Crash Modification Factors Clearinghouse. The full Toolbox of Safety Countermeasures is included in Appendix E. For each countermeasure, the toolbox includes a description, relative cost, and general timeframe for implementation. The toolbox features five major categories of countermeasures, including:

- Engineering,
- Enforcement,
- · Schools,
- Emergency Response, and
- Policy and Legislation.

The following sections and Appendix E identify the name, description, crash reduction factor, and relative implementation cost for each countermeasure. The relative costs are identified by dollar signs (\$) that represent costs ranging from the following:

• \$: less than \$10,000

• *\$\$:* \$10,000 - \$100,000

• \$\$\$: \$100,000 - \$500,000

\$\$\$\$ greater than \$500,000

Engineering Countermeasures

Engineering countermeasures are strategies that focus on roadway design and infrastructure improvement. The strategies are intended to modify road conditions to influence driver behavior and improve the overall roadway safety for all road users and all modes. A select list of engineering countermeasures from the Toolbox of Safety Countermeasures are presented in Table 4, and additional countermeasures for further consideration can be found in Appendix E.

Table 4. Select List of Engineering Countermeasures

Countermeasure	Description	Crash Reduction Factor	Cost
Speed Humps	Speed humps are gently raised sections of the pavement designed to slow down vehicles on low-speed, low-volume roads.	40%	\$\$\$
Roundabouts	Roundabouts are an intersection control type where traffic moves in one direction around a central island and are known to be one of the safest types of intersection control. Roundabouts reduce the number of and the severity of crashes because of their speed reduction, elimination of angle collisions and reduced crossing distances for vulnerable populations. Roundabouts can be customized by shape, size, and design to integrate with various traffic conditions, creating safe intersections across all modes of transportation.	Fatal Crashes: 72% Serious/Minor Crashes: 44%	\$\$\$\$
Right Turn on Red (RTOR) Restrictions	Right-Turn-on-Red (RTOR) Restrictions are designed to reduce conflicts between vehicles that are turning and pedestrians or cross-traffic. RTOR prohibit drivers from making a right turn at a red light, ensuring they come to a full stop and wait for a green signal before proceeding.	-	\$

		Crash	
Countermeasure	Description	Reduction	Cost
		Factor	
Dedicated Turn Lanes	Dedicated Turn Lanes allow vehicles to make left or right turns without interfering with through traffic. They separate turning vehicles from those continuing straight with an auxiliary lane.	58%	\$\$\$\$
Traffic Calming Program	Traffic Calming Programs are deliberate strategies and physical designs used to slow down vehicles and improve safety for pedestrians, cyclists, and other motorists. Traffic Calming measures can include speed humps, raised crosswalks, narrowed travel lanes, or chicanes.	33%	\$\$
Roadway Lighting	Roadway lighting enhances safety and accessibility by improving the visibility of and illuminating key areas. Proper lighting reduces crash risks by making road users and obstacles visible. This is an effective tool at both controlled and uncontrolled intersections, along sidewalks, and areas with high pedestrian volume such as transit stops, schools, parks, and commercial areas.	32%	\$\$\$-\$\$\$\$
Sidewalks	Sidewalks provide designated spaces for the movement of pedestrians and cyclists, separate from vehicular traffic.	40%	\$\$-\$\$\$
Off-Street Trails (Shared Path)	Off-street trails provide dedicated pathways away from vehicle traffic, contributing to enhanced safety and accessibility for active transportation and recreational uses. Off-street trails can accommodate two-ways traffic.	25%	\$\$\$
Crosswalk Visibility Enhancements	Crosswalk visibility enhancements are roadway features that prioritize the safety, accessibility, and convenience of pedestrians by providing recognizable pathways to cross busy streets. The features can include clearly marked crosswalks, pedestrianactivated signals, refuge islands, and improved lighting.	40%	\$
Leading Pedestrian Interval (LPI)	LPI is a traffic timing strategy that gives pedestrians a 3 to 7 second advance start to begin crossing the street before vehicles get a green light in the same direction.	58%	\$-\$\$\$

Enforcement Countermeasures

Enforcement countermeasures are strategies that focus on improving road safety by ensuring compliance with traffic laws, including enhanced law enforcement. Enforcement strategies help reduce aggressive, unsafe, and unlawful behaviors such as impaired driving and speeding. Table 5 highlights ten Enforcement Countermeasures, with the additional countermeasures for further consideration in Appendix E.

Table 5. Select List of Enforcement Countermeasures.

Countermeasure	Description	Crash Reduction Factor	Cost
Communications and Outreach Supporting Enforcement	Public communication and outreach are a strategy used to amplify the impact of enforcement efforts by raising awareness, shaping driving behavior, and building public support for roadway support. Topics can include distracted driving, speeding, impaired driving, and redlight running.		\$
Community Mental Health and Substance Abuse Programs	Mental health and substance abuse plays a significant role in impaired driving that may lead to fatal crashes or serious injuries. Community mental health and substance abuse programs are a form of investment in education, awareness, and improving safety outcomes.	-	\$-\$\$\$
Enhanced Police Impairment Enforcement	Enhanced police impairment enforcement is aimed at reducing crashes caused by alcohol- and drug-impaired driving. It focuses on increasing the perceived and actual risk of detection. Some key strategies include crossagency collaboration between local police, sheriff's department, DOT, and public health agencies; and data-drive enforcement using crash data and GIS mapping to identify hotspots for impaired driving.	16%	\$-\$\$\$
Criminal Justice Impacts	Criminal justice impacts countermeasures is an approach to improve community safety outcomes beyond traditional enforcement. It focuses on deterrence and community engagement, data-driven problem analysis that reveal patterns to guide targeted interventions, and community-centered safety.	-	\$-\$\$
Police Traffic Impact Study Vision and Values	A traffic impact study is an evaluation conducted to understand how a proposed project will affect the surrounding transportation network. Traffic Impact Studies can be embedded as part of a police department's goals, equipping law enforcement personnel with knowledge and expertise to effectively reduce severe causes of congestion, fatal crashes, and serious injuries.	-	\$

Countermeasure	Description	Crash Reduction Factor	Cost
Neighborhood Watch Program	A neighborhood watch program is a community-based countermeasure focused on preventing crime, increasing public trust, and enhancing neighborhood resilience. These programs have the potential to feed on-the-ground insights into broader safety strategies, supporting municipalities with fine-tuning implementation.	-	\$
Variable Speed Limits (VSLs)	A speed management strategy, visible speed limits adjust speed limits based on real-time conditions, including traffic flow, weather conditions, and road surface quality. It helps improve safety by indicating to drivers to adapt to the conditions, preventing crashes caused by sudden slowdowns or congestion.	29%	\$\$
High-Visibility Enforcement	High-visibility enforcement (HVE) is a strategy designed to deter dangerous driving behaviors by increasing law enforcement presence and public awareness. It combines proactive policing, visibility elements, and public education to encourage compliance with traffic laws. High-visibility enforcement can include sobriety checkpoints, speed enforcement zones, and distracted driving enforcement. HVE includes enhanced police impairment enforcement.	27%	\$\$-\$\$\$\$
Statewide Primary Enforcement Seat Belt Law and Motorcycle Helmet Lobbying	Further enforcement of seat belt and motorcycle helmet laws to increase awareness and decrease violations. Enforcing seat belt and motorcycle helmet laws can help reduce fatalities. This is a proven safety measure that reduces serious injuries and fatalities of those involved in crashes.	Fatal Injury in Passenger Cars: 45% Fatal Injury in SUVs, Vans, Pick- up Trucks: 60%	\$\$-\$\$\$\$
Increasing Speed Penalties	Increasing speed penalties is a speed management strategy designed to deter speeding and improve roadway safety. This strategy includes raising fines, adding demerit points, or implementing stricter consequences for repeat offenders.	-	\$\$-\$\$\$\$

School Countermeasures

School countermeasures are safety strategies designed to protect students, staff, and parents in and around educational environments. Table 6 highlights ten countermeasures focused on school safety. Additional countermeasures for further consideration can be found in Appendix E.

Table 6. Select List of School Countermeasures.

Countermeasure	Description	Crash Reduction	Cost
		Factor	
Safe Routes to	Safe Routes to School (SRTS) is an initiative designed to	28%	\$\$-\$\$\$
School	make travel to school safe, convenient, and active. It is		
	intended to encourage walking and biking to school,		
	educating students about increasing physical activity,		
	improving safety, and reducing traffic congestion around		
	schools. Key aspects of the program include infrastructure improvement, educational campaigns, community		
	engagement, and policy advocacy.		
School Travel	A school travel assessment is a strategy designed to improve	_	\$-\$\$\$
Assessments	the safety and efficiency of student transportation. The	_	ψ-ψψψ
Addeddinging	assessment identifies risks associated with school travel and		
	informs the implementation of solutions to reduce crashes		
	and enhance accessibility to and from school.		
Crossing Guard	Crossing guard programs are safety strategies used to	40%	\$\$\$\$
Programs	protect pedestrians, especially children, at school zones and		
	bust intersections. Crossing guards help manage the flow of		
	traffic and ensure a safe crossing environment is provided		
	with visual and physical guidance.		
School Zone	Speed limit reduction, based on context and activity level,	30%	\$\$-\$\$\$
Speed Limit	reduces crashes by lower speeds and increased sign		
Reduction	frequency, specifically in areas near schools. This measure		
	reduces crash risks for students and pedestrians by		
	encouraging drivers to slow down and remain alert. School		
	zone speed limit reductions are temporary speed reductions		
	that apply during school hours to protect students.		
Redesigned	Refers to improvements in parking lot layout and	-	\$-\$\$\$
Parking Lots	infrastructure to enhance traffic flow, student and pedestrian		
	safety, and overall security of the school environment. This		
	can include dedicated pedestrian pathways, designated		
	school drop-off zones, property lighting and posted signage.		

Countermeasure	Description	Crash Reduction Factor	Cost
Expanded Bike Racks	This is a strategy that focuses on increasing the bicycle parking capacity and accessibility on school sites, encouraging students and staff to cycle to school. It is intended to minimize dependency on vehicles, helping reduce congestion and support multimodal transportation.	-	\$
Expanded Sidewalk Access	Expanding sidewalk access is a school safety countermeasure that is intended to improve pedestrian safety and accessibility for students, staff, and parents who are walking to and from school. It is focused on ensuring sidewalks are continuous, well-maintained, and properly designed to support safety and accessibility.	-	\$-\$\$\$
Slow Zones	Slow zones are designated areas where the posted speed limit is permanently reduced to improve safety for pedestrians, cyclists, and vulnerable populations.	-	\$\$-\$\$\$
Pedestrian "Scramble" Phase	A pedestrian "scramble" phase is a traffic signal strategy that stops all vehicle movement at an intersection, allowing students and pedestrians to cross in any direction. It is beneficial in areas with high-foot traffic. It eliminates vehicle hazards, allows safer crossing near schools, and organizes pedestrian movement efficiently.	51%	\$-\$\$\$

Emergency Response Countermeasures

Emergency response countermeasures include protocols for rapid and effective responses to crashes and other emergencies, ensuring timely medical care and scene management. Table 7 highlights examples of emergency response countermeasures from the Toolbox, with additional countermeasures for further consideration in Appendix E.

Table 7. Select List of Emergency Response Countermeasures.

Countermeasure	Description	Crash Reduction Factor	Cost
Helipad Access	Helipad access refers to safety measures designed to protect helicopters, passengers, and ground personnel at helipads. This countermeasure helps mitigate risks associated with landing, takeoff, and external threats ensuring timely care for critically injured individuals.	-	\$\$-\$\$\$
Bus lanes	This strategy refers to the leveraging of dedicated bus lanes to help reduce emergency vehicle delays and improve response times in congested areas. These dedicated lanes provide clear, unobstructed paths for emergency vehicles (ambulance and fire trucks) to bypass traffic.	-	\$\$-\$\$\$\$
Install Emergency Vehicle Pre-emption	The emergency vehicle pre-emption countermeasure is a traffic management strategy that allows emergency vehicles to override traffic signal operations for the purpose of receiving green lights at intersections. This strategy minimizes response times and improves intersection safety for emergency responders as well as roadways users and pedestrians.	70%	\$-\$\$\$
Emergency Turnarounds on Divided Roads	Emergency turnarounds on divided roads are points that allow vehicles, such as ambulances, fire trucks, and law enforcement, to quickly change direction without navigating congested intersections. Restricted to emergency and maintenance vehicles to prevent misuse and traffic safety.	24%	\$\$-\$\$\$

Countermeasure	Description	Crash Reduction Factor	Cost
Road Safety Assessment (RSA)	A RSA is a formal evaluation of the safety performance of a roadway – existing or planned. The goal of the RSA is to identify potential safety issues and recommend the necessary improvements that benefit all road users and all modes. RSAs can identify high-risk areas, improve emergency access, and ensure crash-prone areas are accessible.	-	\$-\$\$
Pedestrian Safety Zone	A pedestrian safety zone is a designated area where specific measures are taken to reduce the risk of pedestrian injuries and fatalities. The zones are identified based on high foot traffic and historical pedestrian-vehicle crashes. Pedestrian safety zones include enforcement efforts targeting speeding as well as failure to yield.	-	\$-\$\$
Fatal Crash Review Commission	A fatal crash review commission is a multidisciplinary group that conducts in-depth review of fatal traffic crashes. The goal of the fatal crash review commission is to identify systemic issues and recommend changes to prevent future crashes and fatalities. Fatal crash reviews include analyzing crash patterns, recommending infrastructure and policy changes, and engaging the public to build transparency.	-	\$\$-\$\$\$

Policy and Legislation Countermeasures

Policy and legislation related countermeasures are strategic tools that are used to shape behavior, enforce safety standards uniformly, and support on-going infrastructure improvements for overall network safety measures. They are an essential component for prioritizing roadway safety and enabling long-term changes. Table 8 highlights examples of policy and legislation countermeasures, with additional countermeasures for consideration in Appendix E.

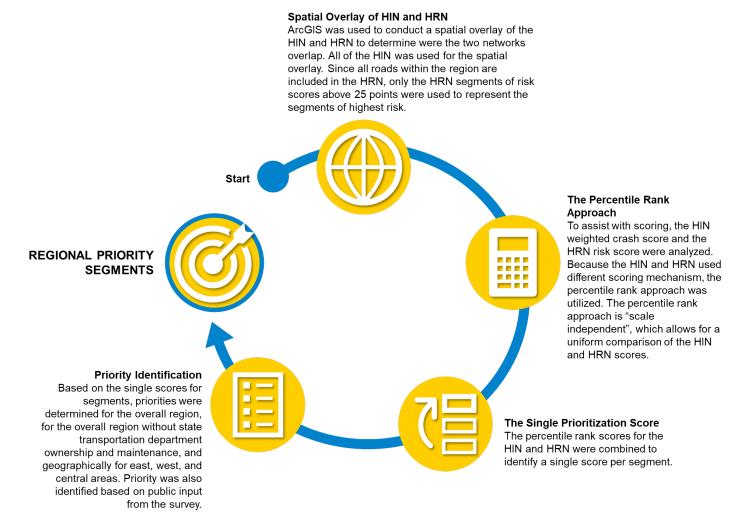
Table 8: Select List of Policy and Legislation Countermeasures

Countermeasure	Description	Crash Reduction Factor	Cost
Distracted Driving Regulations	Distracted driving is any activity that diverts a driver's attention away from the road, visually, manually, or cognitively. Distracted driving regulations aim to reduce accidents caused by driver inattention. Laws focus on mobile phone use, in-car distractions, and enforcement measures (HVE, Primary Enforcement Laws, Zero-Tolerance Zones).	Primary Enforcement Fatal Crash Reduction: 12%	\$- \$\$\$
Vision Zero Dashboard	The Vision Zero Dashboard is an online, data-driven tool that supports the broader Vision Zero policy goals. It plays an important role in monitoring, evaluating, and guiding safety interventions towards eliminating fatal and serious crashes across the transportation network. It helps identify high-risk areas, supports evidence-based policy and infrastructure investments, and justifies securing grants for proposed safety projects.	-	\$\$
Vision Zero Capacity Building	Vision Zero capacity building refers to initiatives that strengthen institutional knowledge, leadership, and cross-agency coordination to integrate safety into all aspects of planning, design, and decision-making processes.	-	\$-\$\$
Drivers Education Financial Assistance	Driver Education Financial Assistance focuses on increasing access to safe driving instruction for younger, lower-income, or underserved populations. It is intended to improve community access by reducing financial barriers, enhance overall safety outcomes, and support long-term behavior changes.		\$-\$\$

Countains	Description	Crash	Cont
Countermeasure	Description	Reduction Factor	Cost
Speed Management Plan	Speed Management Plans provide a structured data- driven framework for setting safe speed limits, modifying road designs, and guiding enforcement and educational strategies to reduce speeding-related	Speed Limit Reductions: 30%	\$-\$\$
	crashes and injuries.	Automated Speed Enforcement: 20%	
		Traffic Calming: 33%	
Local Road Safety Plans	Local Road Safety Plans (LRSP) provide a data-0-drive framework for identifying, prioritizing, and addressing roadway safety issues at the local level. They are intended to formalize safety priorities, guide investment decisions, support systemic change, and foster crossagency collaboration.	Up to 30%	\$-\$\$
Reduce Statutory Speed Limit	An initiative focused on lowering the legally defined default speed limit on certain roadways, such as residential, school zones, and urban corridors to improve safety outcomes. This countermeasure is intended to reduce crash severity, improve driver reaction times, and support the Safe System Approach.	30%	\$\$-\$\$\$
Leverage Public- Private Partnerships (PPPs)	Public-Private Partnerships (PPPs) are collaborative arrangements between government agencies and private-sector organizations to enhance roadway safety, reduce crashes, and improve emergency response capabilities, strengthening the delivery of the Safe System Approach. It is a strategic policy mechanism that brings together public resources and authority with private-sector innovation and investments. PPPs have been used to deploy automated enforcement systems, Vision Zero Dashboards, and School Zone Safety Programs.	-	\$- \$\$ \$

INTRODUCTION

The Borderplex Comprehensive Safe Mobility Plan introduces foundational changes across the MPA as a mechanism to ignite and expedite a culture of safety in the El Paso region. The ability to prioritize strategically serves as a core component of effective roadway safety planning. Project prioritization serves as a structured and transparent process for identifying which interventions will yield the greatest impact in preventing, and ultimately eliminating, fatalities and serious injuries.


The following sections of this Chapter detail the project identification and prioritization process, including accompanying mapping.

PRIORITIZATION PROCESS

EPMPO conducted a comprehensive, data-driven analysis using its High-Injury Network (HIN) and High-Risk Network (HRN) for the purposes of identifying and prioritizing roadway segments. The MPO's approach adopts both quantitative and qualitative processes. The quantitative process integrates the HIN and the HRN, utilizing the segmentation of roadways determined in the HIN. The steps to determining scores and subsequent prioritization of segments are noted in Figure 21.

Figure 22. Need Identification and Prioritization Process.

OVERALL PRIORITY SEGMENTS

Table 9 identifies the top 25 segments across the region. The ID column denotes the segment of roadway, which is depicted in Figure 22. Based on the prioritization process, the greatest safety needs across the region lie along I-10, US 54, and SL 375. These three roads are owned and maintained by TxDOT, which has or is implementing projects like Downtown10 that will address safety issues. TxDOT is a major partner in transportation safety for the region and will be critical to addressing issues through countermeasures.

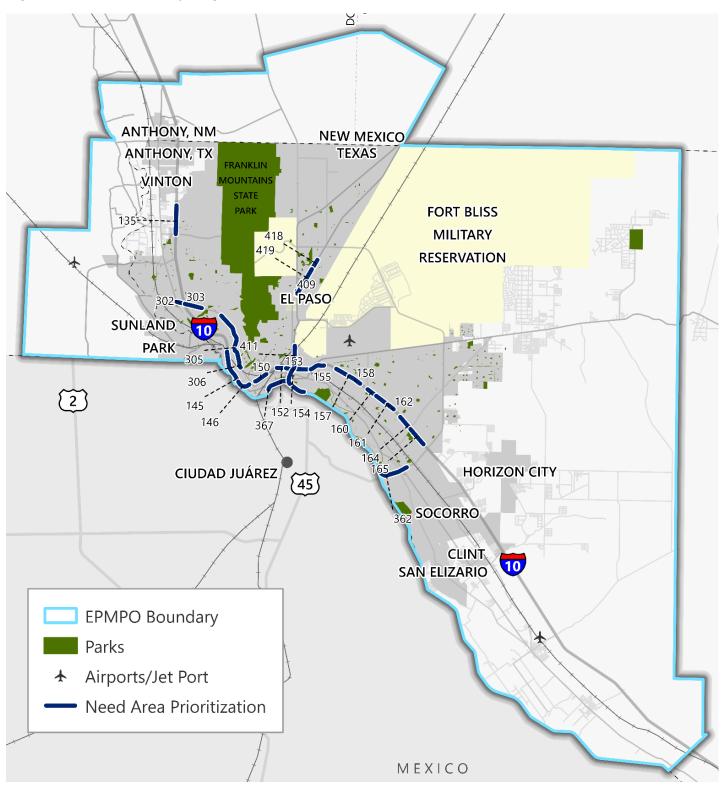


Table 9: Overall Priority Segments

ID	Roadway	From	То	Score
154	Interstate 10	Patriot Fwy	El Paisano Dr	99.5
161	Interstate 10	N Yarbrough Dr	Lomaland Dr	97.7
145	Interstate 10	Executive Center Blvd	Spur 1966	97.5
160	Interstate 10	McRae Blvd	N Yarbrough Dr	97.5
146	Interstate 10	Spur 1966	N Santa Fe St	97.4
150	Interstate 10	East of N Campbell St	N Cotton St	97.2
162	Interstate 10	Lomaland Dr	N Lee Trevino Dr	96.9
155	Interstate 10	E Paisano Dr	Geronimo Dr	96.7
411	US Hwy 54	Pershing Dr	Laredo Ave	95.8
367	State Hwy Loop 375	E 4th Ave	East of S Concepcion St	95.5
152	Interstate 10	N Piedras St	N Copia St	95.1
419	US Hwy 54 Business	Gateway Blvd	Diana Dr	94.7
157	Interstate 10	Airway Blvd	Hawkins Blvd	94.3
153	Interstate 10	N Copia St	Patriot Fwy	94.2
305	State Hwy 20	Sunland Park Dr	Executive Center Blvd	93.9
302	State Hwy 20	Doniphan Dr	I-10	93.6
306	State Hwy 20	Executive Center Blvd	Glory Rd	93.1
164	Interstate 10	Pendale Rd	N Zaragoza Rd	93.1
418	US Hwy 54 Business	Diana Dr	Rushing Rd	93.0
362	State Hwy Loop 375	South of Padilla Dr	Kathy Ave	92.6
158	Interstate 10	Hawkins Blvd	Viscount Blvd	92.0
135	Interstate 10	South of N Desert Blvd	Talbot Ave	91.8
165	Interstate 10	N Zaragoza Rd	Gateway Blvd	91.6
303	State Hwy 20	I-10	N Resler Dr	91.1
409	US Hwy 54	Hercules Ave	Dryer St	91.0

Figure 23: Overall Priority Segments

OVERALL PRIORITY SEGMENTS EXCLUSIVE OF STATE-OWNED AND MAINTAINED ROADS

Table 9 and Figure 23 depict the top 25 segments across the region without including state-owned and maintained roads such as interstates and US and State Highways.

Table 10: Overall Priority Segments Exclusive of State-Owned and Maintained Roads

ID	Roadway	From	То	Score
222	N Lee Trevino Dr	Montwood Dr	Vista del Sol Dr	74.3
224	N Lee Trevino Dr	Rojas Dr	Pellicano Dr	73.5
236	N Resler Dr	Luz de Color Ct	N Resler Dr	70.1
116	George Dieter Dr	Fred Marti Ln	George Dieter Dr	68.9
221	N Lee Trevino Dr	Pebble Hills Blvd	Montwood Dr	67.7
384	Sunland Park Dr	I-10	Crestmont Dr	66.9
114	George Dieter Dr	Pebble Hills Blvd	Montwood Dr	66.8
197	Mc Combes	Fairbanks Dr	Macon Ln	66.8
465	Yarbrough	East of Fresno Dr	N Loop Dr	66.5
201	Montwood Dr	Anise Dr	George Dieter Dr	65.6
115	George Dieter Dr	Montwood Dr	Fred Marti Ln	65.6
290	State Hwy 136	West of Megan St	West of Crawford Rd	64.7
117	Global Reach	Walter Jones Blvd	East of Cottonwoods Dr	64.4
4	Alabama	North of McKelligon Canyon Rd	San Diego Ave	64.0
383	Sunland Park Dr	Doniphan Dr	I-10	63.7
262	Railroad Dr	South of Julian Ave	Adolphus Ave	63.0
223	N Lee Trevino Dr	Vista del Sol Dr	Pellicano Dr	62.9
461	Yarbrough	I-10	Trawood Dr	62.0
40	Diana	West of Stonewall Rd	North of Julian Ave	61.8
232	N Piedras St	Pershing Dr	Wyoming Ave	61.6
56	Edgemere	State Hwy Loop 375	Rich Beem Blvd	61.2
259	Railroad Dr	Porpoise Dr	North of Deer Ave	61.1
122	Hawkins Blvd	Market Ave	Moye Dr	61.1
261	Railroad Dr	North of Tetons Dr	McCombs St	60.3
55	Edgemere	Lee Blvd	State Hwy Loop 375	59.4

ANTHONY, NM NEW MEXICO **TEXAS** ANTHONY, TX FRANKLIN MOUNTAINS VINTON PARK **FORT BLISS** 259 **MILITARY** RESERVATION -236 290 EL PASO 261 117 SUNLAND 56 PARK 22. -223 --116 CIUDAD JUÁREZ **HORIZON CITY** <u>45</u> **SOCORRO** CLINT SAN ELIZARIO **EPMPO** Boundary Parks Airports/Jet Port Need Area Prioritization MEXICO

Figure 24: Overall Priority Segments Exclusive of State-Owned and Maintained Roads

GEOGRAPHIC PRIORITY SEGMENTS

Table 11 through Table and Figure 24 through Figure depict the top 25 segments in east, west, and central MPO area without including state-owned and maintained roads such as interstates and US and State Highways.

Table 11: Geographic Priority Segments - East

ID	Roadway	From	То	Score
49	Eastlake Blvd	West of Blingwood	East of N Kenazo Ave	48.35
241	Paseo Del Este Blvd	Stansburry Dr	Port Royal Pl	43.8
31	Darrington	Roslyn Dr	North of Golden Eagle Dr	38.4
275	Rojas Dr	West of Chapel Hill Rd	East of Emerald Pass Ave	37.35
32	Darrington	Rudi Kuefner Dr	Wirl Rd	35.5
46	Eastlake Blvd	North of I-10	Freshwater Dr	35.5
47	Eastlake Blvd	Covington Ridge Way	West of Payton Dr	34.95
252	Pellicano Dr	State Hwy Loop 375	West of Mission Ridge Rd	34.85
11	Ascencion St	Crosse Ave	North of Alberton Ave	34.65
34	Darrington Rd	White Springs Dr	South of Roaring Springs Dr	34
48	Eastlake Blvd	West of Lamar Dr	East of Lichfield Dr	33.25
376	State Line Dr	West of Amparo Rd	West of Autumn Sage Ln	27
253	Pellicano Dr	East of Mission Ridge Blvd	West of Peyton HIs Dr	26.35
33	Darrington Rd	North of Andrepont St	Diamond Springs Dr	24.95
10	Ascencion St	North of Barrington Dr	Killawog Rd	22.9
186	Krag St	South of Tangerine Ave	Marvin Ln	20.4
45	E Lisa Dr	East of Prescott Anthony Dr	Kimbrough St	19.35
126	Hermosa Dr	East of Coles Rd	West of Prescott Anthony Dr	15.6
377	State Line Dr	East of County Line Dr	East of Calle del Norte	13.75
127	Hermosa Dr	East of County Line Dr	Geronimo Rd	12.5
210	Middle Drain Rd	Midnight Sun Dr	South of Ormsby Ct	11.35
28	County Line Dr	Lobo Ln	South of Mesilla Dr	10.75
9	Ascencion St	South of Bon Alrea Dr	South of Frankclay	8.75
12	Ascencion St	North of Tungsten Rd	North of Las Colonias Rd	8.75
6	Angelina Blvd	San Blas Dr	North of Greiner Dr	6.75

Figure 25: Geographic Priority Segments - East

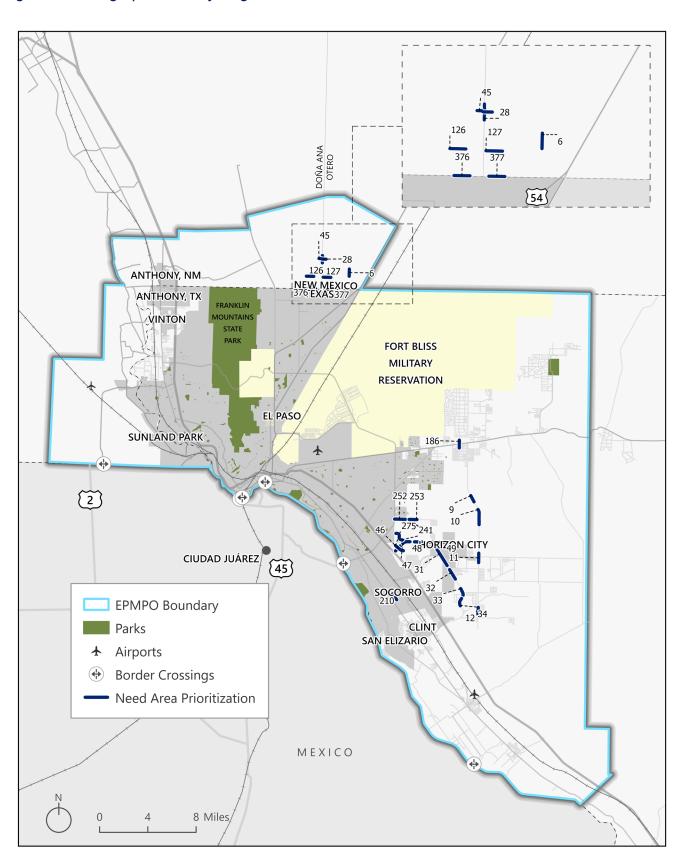
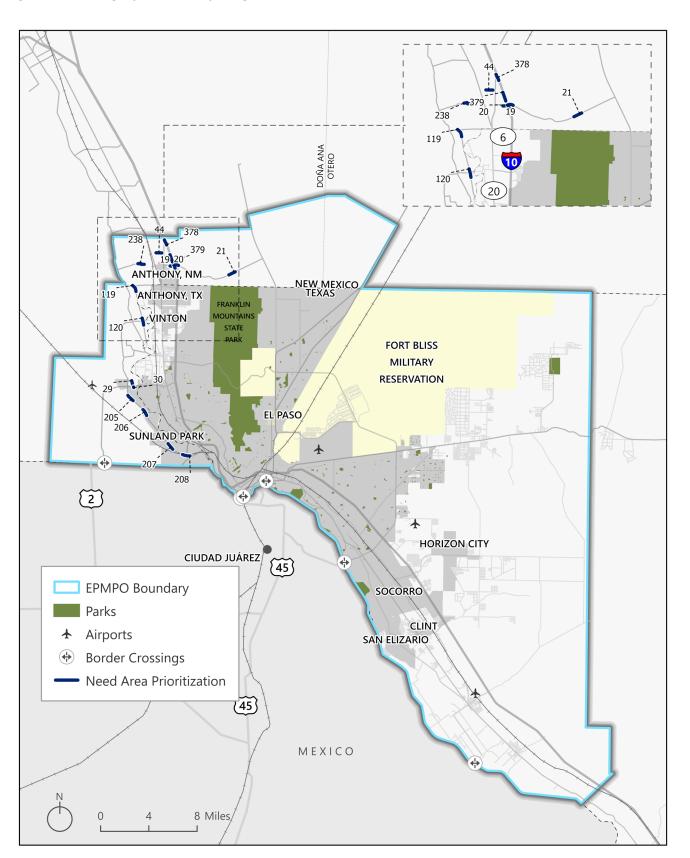


Table 12: Geographic Priority Segments- West

ID	Roadway	From	То	Score
208	McNutt Rd	Antone St	East of Anapra Rd	45
207	McNutt Rd	Santo Domingo Dr	4th st	39.85
205	McNutt Rd	Killdeer Rd	North of Naranjo Rd	38.75
206	McNutt Rd	South of Bay Club Dr	South of Country Club Rd	35.7
20	Charles O Hara Rd	I-10	East of I-10 Frontage Rd	35.55
21	Charles O Hara Rd	East of Sierra Vista Trailhead	West of War Rd	31.5
19	Charles O Hara Rd	East of Clark Rd	I-10	30.2
238	Ohara Rd	East of Three Saints Rd	West of Opitz Rd	23.2
379	Stern Dr	North of Ohara Rd	South of Red Rock Ct	19.75
378	Stern Dr	Ernesto Rd	North of Santa Marie Ln	16.85
119	Westside Rd	Washington St	North of Vinton Rd	14.7
120	Haasville Rd	North of Vinton Rd	North of Bosque Rd	14.7
44	E Joy Dr	Monte Bello Rd	Montana Vista Ave	11.25
29	Crawford Rd	South of Borderland Rd	Peter V Domenici Blvd	6.75
30	Crawford Rd	Peter V Domenici Blvd	North of Airport Rd	0

Figure 26: Geographic Priority Segments- West



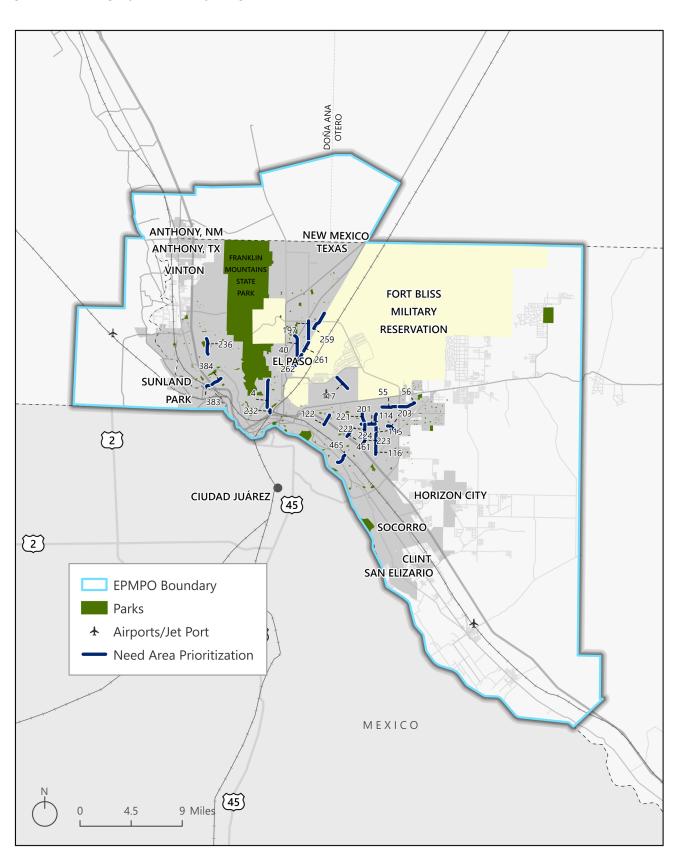
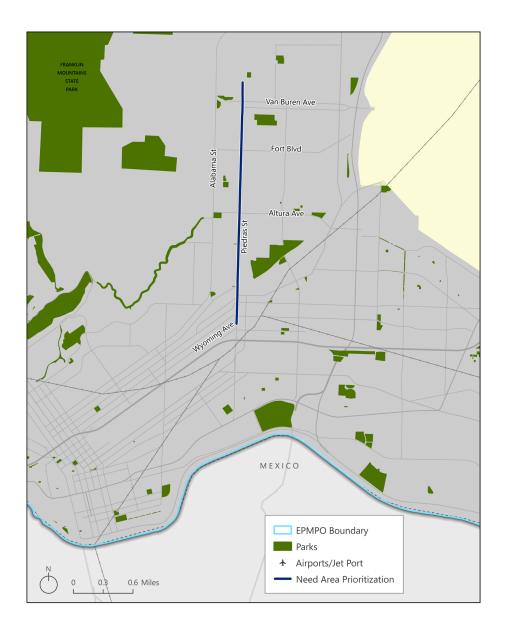


Table 13: Geographic Priority Segments- Central

ID	Roadway	From	То	Score
222	N Lee Trevino Dr	Montwood Dr	Vista del Sol Dr	74.3
224	N Lee Trevino Dr	Rojas Dr	Pellicano Dr	73.5
236	N Resler Dr	Luz de Color Ct	N Resler Dr	70.1
116	George Dieter Dr	Fred Marti Ln	George Dieter Dr	68.9
221	N Lee Trevino Dr	Pebble Hills Blvd	Montwood Dr	67.7
384	Sunland Park Dr	I-10	Crestmont Dr	66.9
114	George Dieter Dr	Pebble Hills Blvd	Montwood Dr	66.8
197	Mc Combes	Fairbanks Dr	Macon Ln	66.8
465	Yarbrough	East of Fresno Dr	N Loop Dr	66.5
201	Montwood Dr	Anise Dr	George Dieter Dr	65.6
115	George Dieter Dr	Montwood Dr	Fred Marti Ln	65.6
117	Global Reach	Walter Jones Blvd	East of Cottonwoods Dr	64.4
4	Alabama	North of McKelligon Canyon Rd	San Diego Ave	64.0
383	Sunland Park Dr	Doniphan Dr	I-10	63.7
262	Railroad Dr	South of Julian Ave	Adolphus Ave	63.0
223	N Lee Trevino Dr	Vista del Sol Dr	Pellicano Dr	62.9
461	Yarbrough	I-10	Trawood Dr	62.0
40	Diana	West of Stonewall Rd	North of Julian Ave	61.8
232	N Piedras St	Pershing Dr	Wyoming Ave	61.6
56	Edgemere	State Hwy Loop 375	Rich Beem Blvd	61.2
122	Hawkins Blvd	Market Ave	Moye Dr	61.1
259	Railroad Dr	Porpoise Dr	North of Deer Ave	61.1
261	Railroad Dr	North of Tetons Dr	McCombs St	60.3
55	Edgemere	Lee Blvd	State Hwy Loop 375	59.4
203	Montwood Dr	Saul Kleinfeld Dr	N Zaragoza Rd	58

Figure 27: Geographic Priority Segments- Central



PUBLICLY IDENTIFIED PRIORITY SEGMENT

Based on the online map survey, 16 of the 43 mapped comments (37%) related to North Piedras Street (see Figure 27). This feedback was used to identify the publicly identified priority segment. Issues identified by the public included lack of safety for pedestrians, intersection issues, and poor lighting.

Figure 28: North Piedras Street – Publicly Identified Segment

Municipal Priorities

The priorities highlighted in this chapter are intended to set the landscape for turning data-driven insights into real-world safety improvements for the region. Through the prioritization framework, the MPO and municipalities will be able to identify opportunities for advancing design and engineering of countermeasures, secure funding, as well as pilot temporary installations to test effectiveness and gather feedback from agencies, community residents, and elected officials. To further assist with prioritization, the top segments for each municipality in the MPO areas are listed in the sections below. Note that the town of Vinton did not have any top segments, including segments on state department of transportation owned and/or maintained roadways.

A complete list of prioritized segments is included in Appendix F.

CITY OF EL PASO

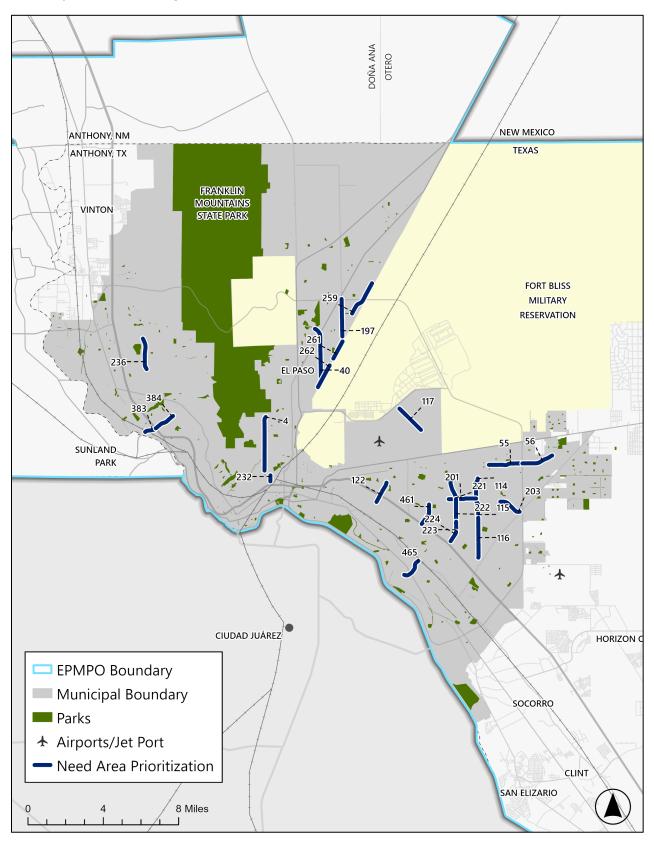
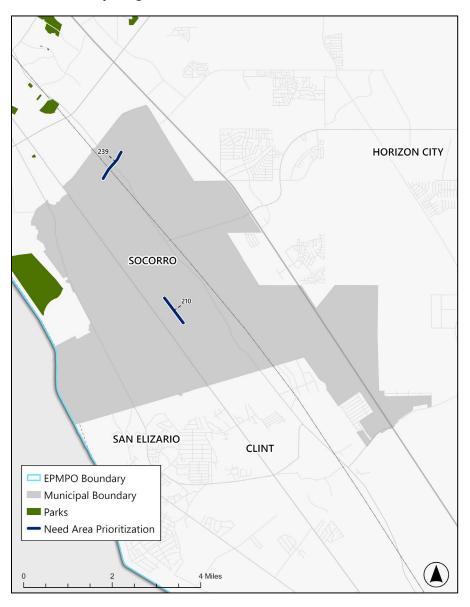

The following list and map include the top 25 segments in the city of El Paso, Texas, not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 14: City of El Paso Segments

ID	Roadway	From	То	Score
222	N Lee Trevino Dr	Vista del Sol Dr	Montwood Dr	74.3
224	N Lee Trevino Dr	Rojas Dr	Pellicano Dr	73.45
236	N Resler Dr	Duxbury Dr	Luz de Color Ct	70.1
116	George Dieter Dr	Casa Kia	Fred Marti Ln	68.9
221	N Lee Trevino Dr	Montwood Dr	Pebble Hills Blvd	67.7
384	Sunland Park Dr	I-10	Cadiz St	66.85
114	George Dieter Dr	Montwood Dr	Pebble Hills Blvd	66.75
197	McCombs St	Macon Ln	Loop 375	66.75
465	Yarbrough Dr	Fresno Dr	Loop Dr	66.45
201	Montwood Dr	Anise Dr	George Dieter Dr	65.6
115	George Dieter Dr	Fred Marti Ln	Montwood Dr	65.55
117	Global Reach Dr	Walter Jones Blvd	Cottonwoods Dr	64.4
4	Alabama St	San Diego Ave	McKelligon Canyon Rd	63.95
383	Sunland Park Dr	Doniphan Dr	I-10	63.65
262	Railroad Dr	Underwood Golf Complex	Hercules Ave	63
223	N Lee Trevino Dr	Pellicano Dr	Vista del Sol Dr	62.85
461	Yarbrough Dr	I-10	Trawood Dr	62
40	Diana Dr	Apollo Ave	Stonewall Rd	61.8
232	N Piedras St	Wyoming Ave	Pershing Dr	61.6
56	Edgemere Blvd	Loop 375	Rich Beam Blvd	61.2
122	Hawkins Blvd	Market Ave	Moye Dr	61.05
259	Railroad Dr	Mount Franklin Foods	Roy Johnson Ln	61.05
261	Railroad Dr	El Paso Natural Gas	McCombs St	60.25
55	Edgemere Blvd	Lee Blvd	Loop 375	59.35
203	Montwood Dr	Saul Kleinfeld Dr	Zaragoza Rd	57.8

Figure 29: City of El Paso Segments


CITY OF SOCORRO

The following list and map include the top segments in the city of Socorro, Texas, not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 15: City of Socorro Segments

ID	Roadway	From	То	Score
210	Middle Drain Rd	Ormsby Ct	Midnight Sun Dr	11.35
239	Old Hueco Tanks Rd	Pandora Rd	Hueco Junction Rd	5

Figure 30: City of Socorro Priority Segments

EL PASO COUNTY

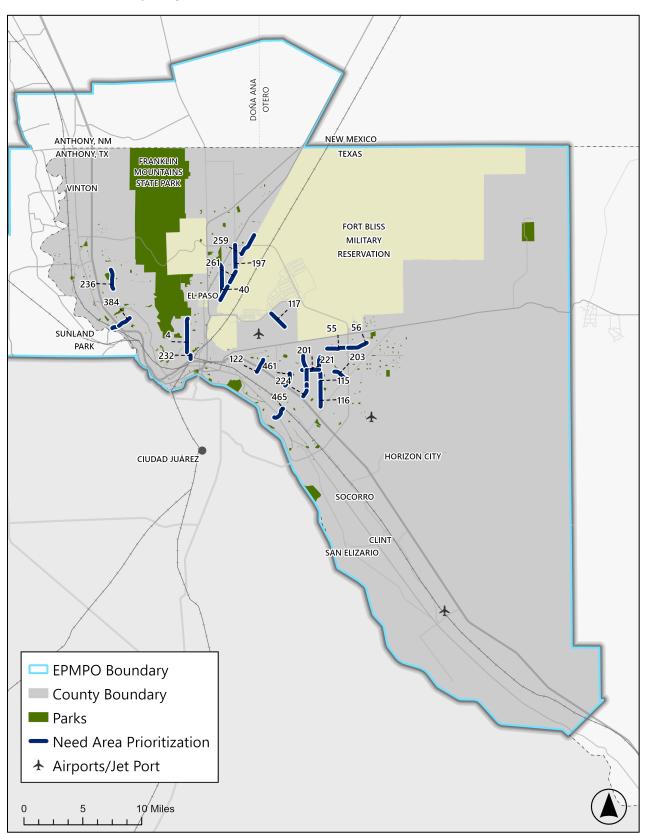
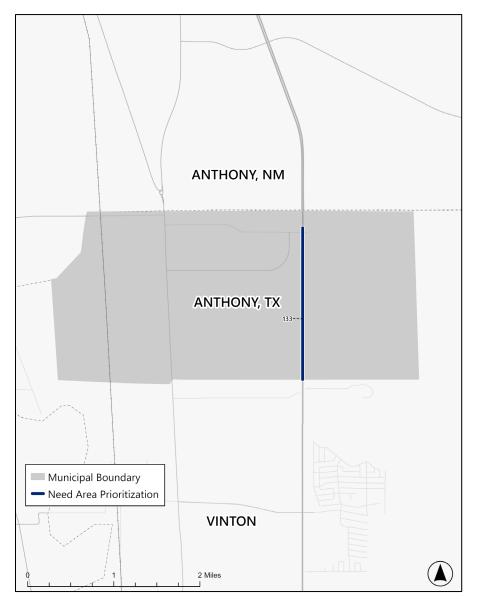

The following list and map include the top 25 segments in El Paso County, Texas, not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 16: El Paso County Segments

ID	Roadway	From	То	Score
222	N Lee Trevino Dr	Vista del Sol Dr	Montwood Dr	74.3
224	N Lee Trevino Dr	Rojas Dr	Pellicano Dr	73.45
236	N Resler Dr	Duxbury Dr	Luz de Color Ct	70.1
116	George Dieter Dr	Casa Kia	Fred Marti Ln	68.9
221	N Lee Trevino Dr	Montwood Dr	Pebble Hills Blvd	67.7
384	Sunland Park Dr	I-10	Cadiz St	66.85
114	George Dieter Dr	Montwood Dr	Pebble Hills Blvd	66.75
197	Mccombes St	Macon Ln	Loop 375	66.75
465	Yarbrough Dr	Fresno Dr	Loop Dr	66.45
201	Montwood Dr	Anise Dr	George Dieter Dr	65.6
115	George Dieter Dr	Fred Marti Ln	Montwood Dr	65.55
117	Global Reach Dr	Walter Jones Blvd	Cottonwoods Dr	64.4
4	Alabama St	San Diego Ave	McKelligon Canyon Rd	63.95
383	Sunland Park Dr	Doniphan Dr	I-10	63.65
262	Railroad Dr	Underwood Golf Complex	Hercules Ave	63
223	N Lee Trevino Dr	Pellicano Dr	Vista del Sol Dr	62.85
461	Yarbrough Dr	I-10	Trawood Dr	62
40	Diana Dr	Apollo Ave	Stonewall Rd	61.8
232	N Piedras St	Wyoming Ave	Pershing Dr	61.6
56	Edgemere Blvd	Loop 375	Rich Beam Blvd	61.2
122	Hawkins Blvd	Market Ave	Moye Dr	61.05
259	Railroad Dr	Mount Franklin Foods	Roy Johnson Ln	61.05
261	Railroad Dr	El Paso Natural Gas	McCombs St	60.25
55	Edgemere Blvd	Lee Blvd	Loop 375	59.35
203	Montwood Dr	Saul Kleinfeld Dr	Zaragoza Rd	57.8

Figure 31: El Paso County Segments

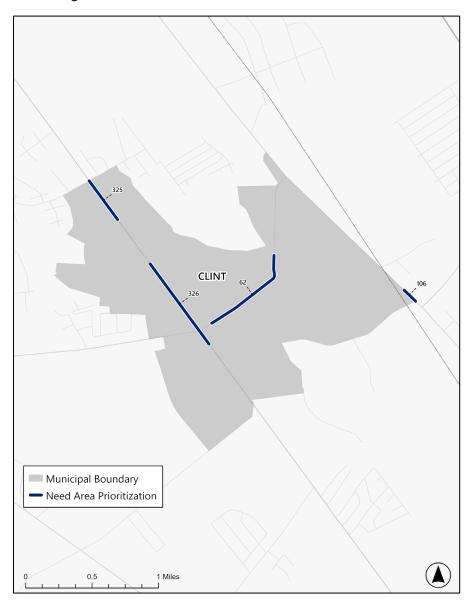

TOWN OF ANTHONY

The following list and map include the top segment in the town of Anthony, Texas, inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 17: Town of Anthony Segment

ID	Roadway	From	То	Score
133	Interstate 10	In Anthony	Town Limits	89.15

Figure 32: Town of Anthony Segment

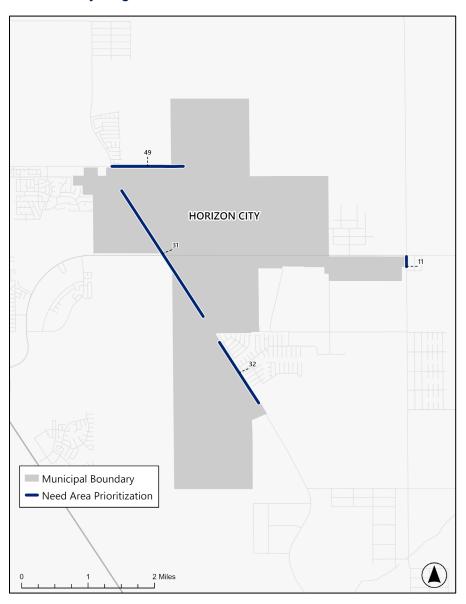

TOWN OF CLINT

The following list and map include the top segments in the town of Clint, Texas, inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 18: Town of Clint Segments

ID	Roadway	From	То	Score
325	State Hwy 20	Burbridge Rd	Robert Valera	51.7
326	State Hwy 20	El Paso County Water Improvement District	Clint Junior High School	49.1
62	FM 1110	Bonito St	Valley Ranch Pl	30.55
106	FM 76	Celum Rd	13273 N Loop Dr	22.15

Figure 33: Town of Clint Segments

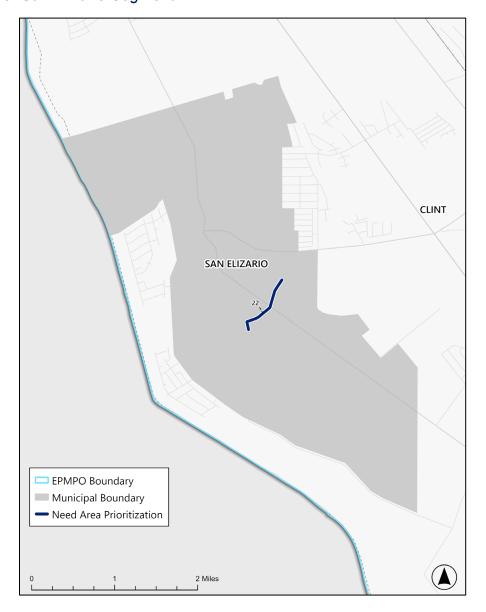

TOWN OF HORIZON CITY

The following list and map include the top segments in the town of Horizon City, Texas, not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 19: Town of Horizon City Segments

ID	Roadway	From	То	Score
49	Eastlake Blvd	Darrington Rd	Kenazo Ave	48.35
31	Darrington Rd	Thayer Pease Ave	Roslyn Dr	38.4
32	Darrington Rd	Wirl Rd Rudi Kuefner Dr		35.5
11	Ascencion St	In Horizon City Limits		34.65

Figure 34: Town of Horizon City Segments

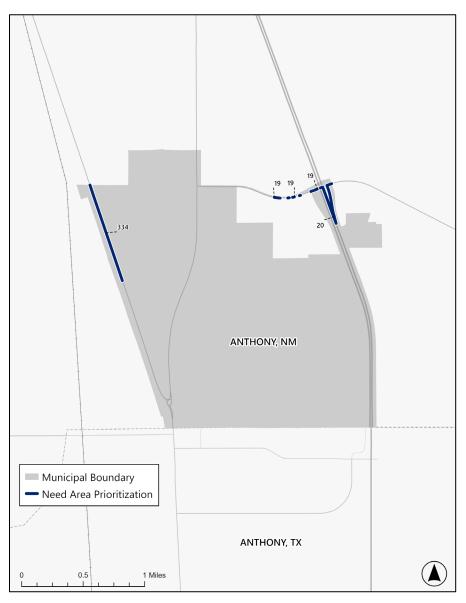

TOWN OF SAN ELIZARIO

The following list and map include the top segment in the town of San Elizario, Texas, not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 20: Town of San Elizario Segment

ID	Roadway	From	То	Score
22	Chicken Ranch Rd	Tabasco Dr	Barrial Rd	4.8

Figure 35: Town of San Elizario Segment


CITY OF ANTHONY

The following list and map include the top segments in the city of Anthony, New Mexico not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 21: City of Anthony Segments

ID	Roadway	From	То	Score
334	State Hwy 478	Ohara Rd	Whispering Dove Rd	36.05
20	Charles O Hara Rd	I-10	Anthony City Limits	35.55
19	Charles O Hara Rd	I-10	Stern Dr	30.2

Figure 36: City of Anthony Segments

CITY OF SUNLAND PARK

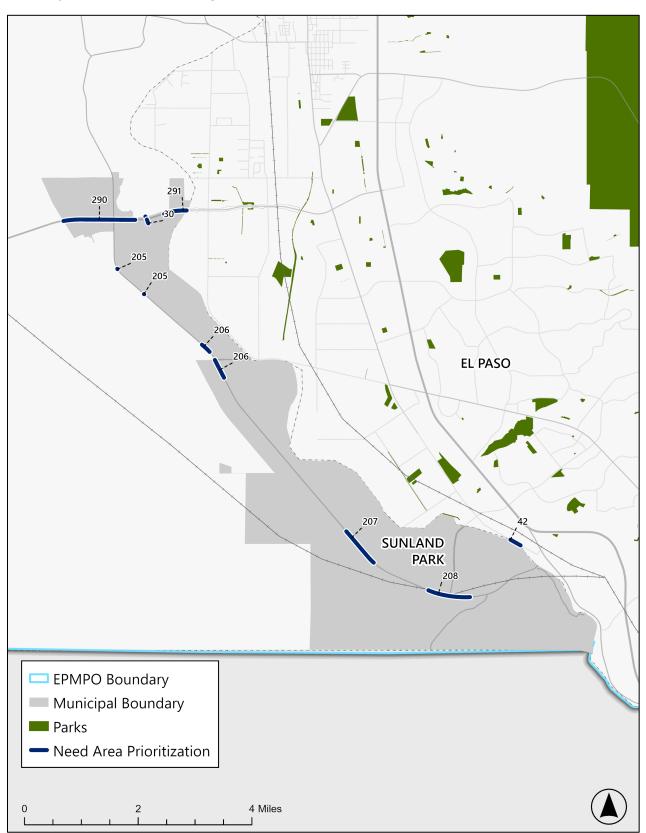

The following list and map include the top segments in the city of Sunland Park, New Mexico not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 22: City of Sunland Park Segments

ID	Roadway			Score
290	State Hwy 136	Sunland Park City Limits	Crawford Rd	64.7
208	McNutt Rd	Antone Rd	Anapra Rd	45
207	McNutt Rd	Santo Domingo Dr	4 th St	39.85
205	McNutt Rd	Britain Dr	Sunland Park Fire Department Station 2	38.75
42	Doniphan Dr	In Sunland Park City Limits		37.15
291	State Hwy 136	West Drain Canal	Sunland Park City Limits	36.35
206	McNutt Rd	Arcoiris Development Center	Santa Teresa Medical Center	35.7
29	Crawford Rd	SH 136	Sunland Park City Limits	6.75
30	Crawford Rd	SH 136	Immediately southward of SH 136	0

Figure 37: City of Sunland Park Segments

DOÑA ANA COUNTY

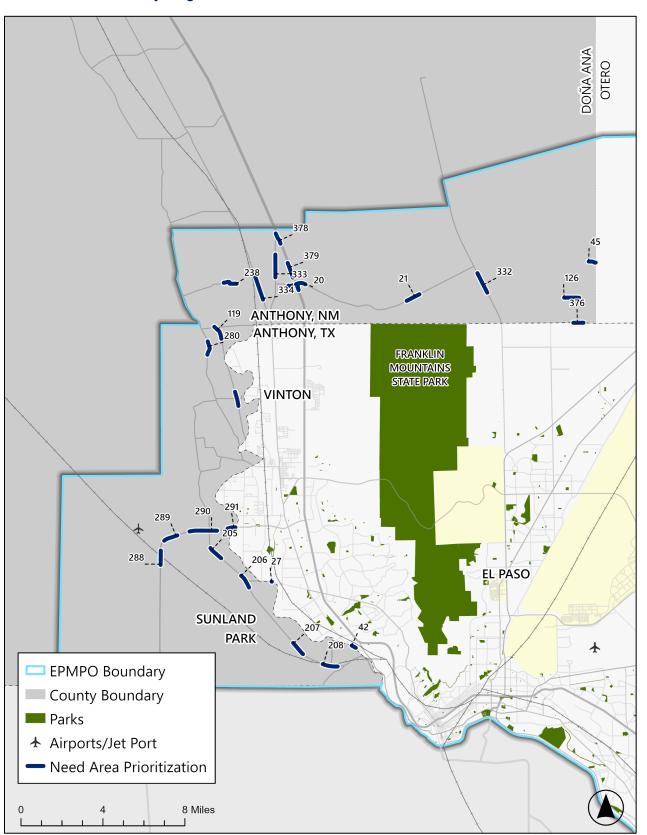

The following list and map include the top 25 segments in Doña Ana County, New Mexico not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 23: Doña Ana County Segments

ID	Roadway	From	То	Score
290	State Hwy 136	Crawford Road	Russell Blvd	64.7
333	State Hwy 460	Lipps Rd	Red Rock Ct	58.1
27	Country Club Rd	Acro	ss the Rio Grande	47.45
208	Mcnutt Rd	Antone Rd	Anapra Rd	45
332	State Hwy 213	0.3 mi south of Ruby Rd	0.7 mi north of Ruby Rd	41.95
207	Mcnutt Rd	Santo Domingo Dr	4 th St	39.85
205	Mcnutt Rd	Britain Dr	Sunland Park Fire Department Station 2	38.75
42	Doniphan Dr	In Doñ	a Ana County Limits	37.15
291	State Hwy 136	West Drain Canal	Doña Ana County Limits	36.35
334	State Hwy 478	0.8 mi south of Ohara Rd	0.4 mi north of Ohara Rd	36.05
206	Mcnutt Rd	Arcoiris Development Center	Santa Teresa Medical Center	35.7
288	State Hwy 136	0.35 mi south of Airport Rd	0.35 mi north of Airport Rd	35.7
20	Charles O Hara Rd	I-10	Anthony City Limits	35.55
21	Charles O Hara Rd	3 mi west of War Rd	3.7 mi west of War Rd	31.5
19	Charles O Hara	I-10	Stern Dr	30.2
289	State Hwy 136	0.9 mi north of Airport Rd	2 mi north of Airport Rd	28.3
376	State Line Dr	Amparo Rd	Autumn Sage Ln	27
280	S Hwy 28	5025 NM-28	Little Rd	24.6
238	Ohara Rd	Opitz Rd	Bosque Rd	23.2
379	Stern Dr	0.45 mi north of Ohara Rd	1.4 mi north of Ohara Rd	19.75
45	E Lisa Dr	628 E Lisa Dr	County Line Dr	19.35
378	Stern Dr	0.55 mi south of NM-460	0.2 mi north of NM-460	16.85
126	Hermosa Dr	0.35 mi west of Amparo Rd	0.35 mi east of Amparo Rd	15.6
119	Westside Rd	Washington St	0.85 mi south of Washington St	14.7
120	Westside Rd	0.35 mi south of Vinton Rd	0.35 mi north of Vinton Rd	14.7

Figure 38: Doña Ana County Segments

OTERO COUNTY

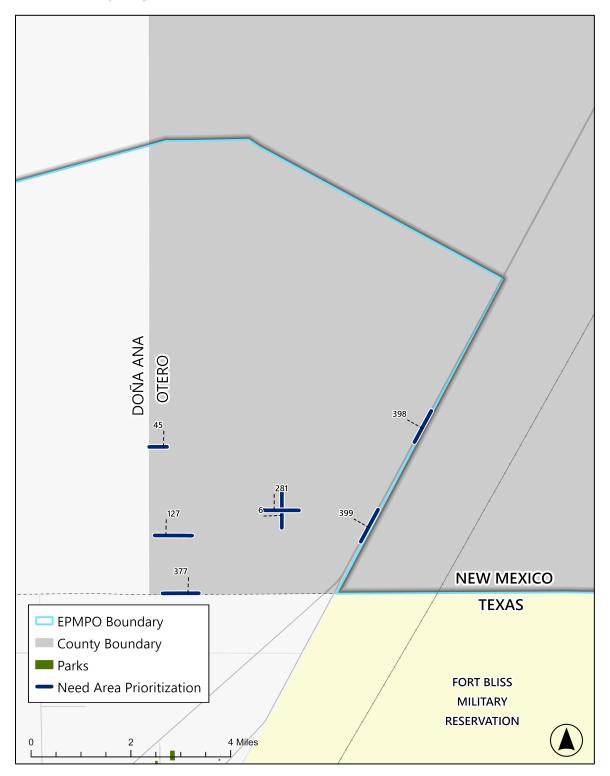

The following list and map include the top segments in Otero County, New Mexico not inclusive of state owned and maintained roadways such as interstates and US and State Highways.

Table 24: Otero County Segments

ID	Roadway	From	То	Score
398	US Hwy 54	0.35 mi south of Angelina Blvd	0.35 mi north of Angelina Blvd	37.55
399	US Hwy 54	Riley Way	0.85 mi north of Riley Way	34.1
45	E Lisa Dr	County Line Dr	Orlando St	19.35
377	State Line Dr	County Line Dr	Calle del Norte	13.75
127	Hermosa Dr	County Line Dr	Geronimo Rd	12.5
6	Angelina Blvd	Greiner Dr	San Blas Dr	6.75
281	Steve Dr	Jung Sun Ln	Alamosa Dr	0

Figure 39: Otero County Segments

Pilot Projects

From the list of prioritized segments, five pilot projects were identified. Projects were selected based on the priorities discussed in previous sections including:

- Overall priority not including roadways owned by departments of transportation (e.g., interstates),
- · Top priorities in encompassing east, west, and central regions, respectively, and
- Publicly identified roadway.

The pilot projects, countermeasures, and associated timeframes for potential implementation are discussed in Table 25. Further information about the pilot projects can be found in Appendix G.

Table 25. Pilot Project Information

Priority	Segment	Segment Limits	Countermeasures*	Implementation Timeframe**
Overall (not including roadways owned by departments of transportation)	North Lee Trevino Drive***	Montwood Drive to Vista del Sol Drive	Crossing and pedestrian improvements	1-5 years
East Region	Eastlake Boulevard	West of Blingwood Drive to East Horizon Mesa Drive	Crossing, pedestrian, and traffic signal improvements	5-10 years
West Region	McNutt Road	West Antone Road to East Sunland Park Drive	Pedestrian and roadway improvements	5-10 years
Central Region	North Resler Drive***	Black Ridge Drive to Duxbury Drive	Crossing, pedestrian, roadway, and traffic signal improvements	5-10 years
Publicly Identified	North Piedras Street	Polk Avenue to Wyoming Avenue	Crossing, pedestrian, roadway, and traffic signal improvements	5-15 years

^{*} These are general countermeasures. More specific information can be found in Appendix G. ** These implementation timeframes assume funding is available. EPMPO would not be responsible for implementing projects but may provide funding. EPMPO did prioritize projects identified as Segment Priorities during its 2052 Metropolitan Transportation Plan.

*** North Lee Trevino Drive was identified as both the overall priority and Central region priority. The next top segment for the Central region, North Resler Drive, was selected as the pilot.

INTRODUCTION

The Borderplex Safe Mobility Plan is a call to action for EPMPO, the local jurisdictions, and partner agencies. Getting to the shared safety vision requires a multifaceted approach involving a wide range of stakeholders looking to implement countermeasures that are appropriate for their needs. The following sections provide strategies that help stakeholders move toward Vision Zero. The chapter also discusses monitoring measures because tracking performance and progress is key to moving the region forward.

BUILDING A CULTURE OF SAFETY

One of the key principles of the Safe System Approach is that "Responsibility is Shared". Although this does not translate into equal responsibility amongst every stakeholder, each entity must do their respective part to improve traffic safety and achieve the vision, goal, and objectives of this Safe Mobility Plan. The BSMP serves as EPMPO's commitment to developing a regional plan for the successful application of a new culture that emphasizes safety amongst all other aspects of mobility. Actions that EPMPO and stakeholders can take to ensure a culture of safety include the following strategies.

- Sharing the data included in the BSMP to stakeholders to use for analysis and identifying methods for addressing safety needs, including those identified in Chapter 6.
- Continuous engagement of stakeholders through the EPMPO Transportation Policy Board (TPB) and Transportation Project Advisory Committee (TPAC) as well as participation in municipal and other stakeholder activities.
- Coordination of collaborative opportunities for stakeholders to jointly apply for funding opportunities such as the Safe Streets and Roads for All Grant Program.
- Consider and incorporate the HIN and HRN into future planning efforts.
- Develop stakeholder-specific Vision Zero and/or Safety Action Plans.

Adopting a culture of safety will ease the way toward implementation of countermeasures identified in this plan.

NEEDS TO PROJECTS

Chapter 6 identified needs within the MPA based on a data-driven, safety-focused approach. Turning needs into projects requires further action to go from identification to implementation. To assist stakeholders with determining how to move toward implementation, Figure 39 identifies potential countermeasures and implementation timelines by crash profiles. The full list of countermeasures can be found in Appendix E.

Figure 40. Crash Profiles

Major arterials with crashes that occur on roads with speed limits greater than 35 miles per hour (mph)

CRASH PROFILE

Signalized intersection

with crashes involving

turning vehicles

CRASH PROFILE

Road safety audit

Speed management

POTENTIAL COUNTERMEAUSURES

- Reduce lane widths
- Bike lanes
- Lighting management

3-5 years POTENTIAL IMPLEMENTATION TIMELINE

POTENTIAL COUNTERMEAUSURES

Leading pedestrian interval

Turning restrictions

- Flashing yellow arrows
- Turning restrictions
- Traffic calming demonstrations

1-3 years POTENTIAL IMPLEMENTATION **TIMELINE**

MODE IMPACTED

POTENTIAL COUNTERMEAUSURES

Rural roads with suspected injuries

CRASH PROFILE

- Road safety audit
- Lighting management
- Wider edge lines
- Advanced notice of horizontal curves
- Rumble strips

1-3 years POTENTIAL IMPLEMENTATION **TIMELINE**

MODE IMPACTED

Uncontrolled intersections with pedestrian and/or cyclist-involved crashes

CRASH PROFILE

POTENTIAL COUNTERMEAUSURES

- Pedestrian hybrid beacons
- Removing sightline obstructions
- Retroreflective stop signs
- Speed management

1-3 years
POTENTIAL IMPLEMENTATION
TIMELINE

1-3 years
POTENTIAL IMPLEMENTATION
TIMELINE

3-5 years

POTENTIAL IMPLEMENTATION

TIMELINE

Residential areas with crashes related to speed

CRASH PROFILE

POTENTIAL COUNTERMEAUSURES

- Safe Routes to Schools
- Paved shoulders
- Reduced lane widths
- Roundabouts
- Speed humps
- Chicanes

Interstate highway crashes with fatal and/or serious injuries

CRASH PROFILE

POTENTIAL COUNTERMEAUSURES

- Corridor studies
- Pavement design
- · Road safety audit
- Variable speed limits
- HOV/Transit lanes for emergency vehicle use

In addition, the pilot projects identified in Chapter 6, and further discussed in Appendix G, provide a baseline for stakeholders to use to determine specific approaches to developing projects for the needs that have been identified in this plan.

Funding Opportunities

Moving from needs to projects requires funding to reach implementation. Stakeholders responsible for implementation may have their own budgets and funding streams, but a number of funding opportunities exist to supplement those streams. Table 25 provides a list of funding opportunities available for stakeholders to utilize to move toward Vision Zero.

Table 26. Potential Funding Opportunities

Funding Opportunity	Entity
Safe Streets and Roads for All (SS4A)	USDOT
Federal Surface Transportation Program (STP)	FHWA
Highway Safety Improvement Program (HSIP)	FHWA
Federal Transportation Alternatives (TA) Program	FHWA
Highway Safety Grants Program	NHTSA
State Transportation Alternatives (TA) Set-Aside Program	TxDOT
Traffic Safety eGrants Program	TxDOT
MPO Transportation Alternatives (TA) Set-Aside Program	EPMPO

SAFETY INTEGRATION

Accomplishing the roadway safety goals and objectives of the BSMP relies on the integrated framework of the Safe Systems Approach, as presented in Chapter 1. This approach ensures that the initiatives adopted going forward address the systemic challenges, optimize resource allocation, and deliver long-term results for the region. The identified recommendations that integrate safety draw upon the categories of the Safe System Approach: **Safe People** (Figure 40), **Safe Roads** (Figure 41), **Safe Speeds** (Figure 42), and **Safe Vehicles** (Figure 43). Together, these represent the multifaceted approach required to reshape the region's communities and transportation network. These are grounded in data evaluation, countermeasure best practices, and priority needs of the region. The recommendations are tailored to address the current challenges while seizing future opportunities for embedding and expanding safety measures.

Figure 41. Safe People Recommendations.

Leverage Public-Private Partnerships

Seeking partnerships with the private sector including major local employers, philanthropic foundations and others who may have interests in reducing traffic fatalities. These partnerships may include but are not limited to financial assistance with programs as well as specialized advisory and consulting roles.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government

Improve Impaired Driving Enforcement

May include formation of impairment enforcement task force. May also include tactics such as publicized sobriety checkpoints informed by an equitable and data driven process as well as highly visible patrols in areas prone to impaired driving.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Law enforcement

Communications and Outreach

Utilize tools such as mailing lists, websites, public space signage, and others to place emphasis on enforcement related to speeding, red-light running, impairment, and occupant protection. These communications and outreach campaigns should use relevant safety data to help inform public of state of safety in the Borderplex region.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs, EPMPO

Transit Use Support

Utilize tools such as mailing lists, websites, public space signage, Identifying strategic investments to support first-mile/last-mile pedestrian and bike infrastructure, enhancing bus operations and creating a more integrated transit network. These investments would help foster a safer, more sustainable, and more inclusive transportation system.

Timeline: 3 – 5 years

Potential Responsible Party(ies): Local government, transit agencies, EPMPO

Figure 42. Safe Speeds Recommendations.

Speed Management Plan

Evaluate tools and methods for speed limit setting and speed reduction techniques. Development of toolbox for enforcement activities and design elements that can be incorporated into projects to reduce speeding. Evaluation of areas in the Borderplex region to target speeding and conduct public outreach campaign.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs

Construction of signs that dynamically show the driver's speed and the posted speed limits. Placement of signs should be data driven and placed in areas where speeding is higher than others.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs

Enhanced Speed Enforcement

Expansion of speed enforcement through additional officers for traffic related units or funding if necessary. Tactics such as radar and high visibility enforcement may be implemented. Placement of tactics should be determined through an equitable and data driven process considering locations of high rates of speed and speed related crashes.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Law enforcement

Traffic Calming Measure

Targeted placement of physical design components such as speed bumps, roundabouts, raised crosswalks, road diets, and others to reduce speed and reckless driving habits. Placement should be informed by related traffic data such as speeds, congestion, crashes, and crash severity.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs

Figure 43. Safe Roads Recommendations.

Intersection Control Evaluation

Implement an Intersection Control Evaluation process that will assess intersection safety improvements using a benefit-to-cost ratio

Timeline: 3 – 5 years

Potential Responsible Party(ies): Local government, DOTs

Traffic Safety Guidelines for Traffic Impact Studies

Incorporate safety as a core evaluation criterion for private driveways and traffic impact studies.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs

Complete Streets Design Guide

Development of a guide that encompasses project design steps from project development, design, and construction with the principles of Complete Streets as the core tenants.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, EPMPO

Prioritize Safety in CIP Process

Adoption of a multifaceted prioritization process within the Capital Improvement Program that includes evaluating infrastructure assets based on safety, mobility, state of good repair, traffic flow, equity, and economic development.

Timeline: 3 – 5 years

Potential Responsible Party(ies): Local government, DOTs, EPMPO

SAFE ROADS

Figure 44. Safe Vehicles Recommendations.

Outreach Campaign for Vehicle Safety Checks

Utilize tools such as mailing lists, websites, public space signage, and others to place emphasis on drivers regularly inspecting vehicles to ensure all components and all safety components are functioning properly.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs, EPMPO

Automated Driving Systems Regulation

Driving Systems (ADS), data on crashes involving vehicles with ADS should be rigorously tracked, analyzed, and published to inform drivers and improve ADS systems.

Timeline: 3 – 5 years

Potential Responsible Party(ies): Local government, DOTs

Track and Investigate Arising Safety Issues

With the advent of new vehicle technologies and safety features, timely investigation of issues with new technologies should occur to ensure public safety.

Timeline: 3 – 5 years

Potential Responsible Party(ies): Local government, DOTs, EPMPO

Seat Belt Outreach Campaign

Utilize tools such as mailing lists, websites, public space signage, and others to place emphasis on consistent usage of seat belts for drivers throughout the Borderplex region.

Timeline: 1 – 2 years

Potential Responsible Party(ies): Local government, DOTs, EPMPO

LEGISLATIVE COORDINATION

A review of safety improvements constrained by current state law in Texas and New Mexico has been conducted to support local municipalities and the EPMPO in advocating for policy reforms that enable implementation of proven safety strategies across the region. The following recommendations are provided based on this review:

Law Enforcement Legal Barriers at Municipal, County, and State Levels: Utilizing law enforcement tools such as automated speed enforcement and red-light camera, license plate readers, speed limit reductions, and traffic calming measures require a multi-agency approach to be effective at the regional level. Laws vary by jurisdiction, and therefore use of these tools may require legislation by each city and county, in addition to adopted or modified legislation in Texas and New Mexico. As next steps, the EPMPO should document which improvements require city/county ordinances versus state-level legislation.

CASE STUDY: LOUISVILLE, KENTUCKY

SPEED REGULATIONS

Some communities have codified speed regulations in city code. Louisville, Kentucky, has codified a base speed limit for their roadways of 25mph, subject to listed exceptions (1999 Lou. Code, § 72.02) (Lou. Ord. No. 60-1962, approved 5-10-1962; Lou. Am. Ord. No. 144-1982, approved 8-11-1982; Lou. Ord. No. 0057-2001, approved 4-24-2001; Lou. Metro Am. Ord. No. 188-2003, approved 10-28-2003; Lou. Metro Am. Ord. No. 99-2007, approved 6-4-2007). These discuss who may set speed limits, what needs to be evaluated for setting speed limits, and regular exceptions (e.g. vehicles shall not drive faster than 15 miles per hour in an alley). In March 2025, Louisville Metro Public Works released the city's first Speed Management Plan to support its transportation safety efforts. The plan recommends strategies to manage speeds through policy changes, street design, education, and enforcement. These are aimed at helping Louisville realize its vision of zero roadway deaths by 2050.

Differences in Funding Capacity and Limitations at Municipal and County Level: Larger communities, such as the City of El Paso, may have staff, technical expertise, and financial resources to implement safety improvements—even if modest in scale. Smaller and rural agencies often lack the capacity to pursue competitive grants or implement complex projects without external support. To advance safety initiatives the EPMPO may support less resourced agencies by, for instance, offering technical assistance for grant applications and policy adoption and/or developing shared services or regional implementation models to reduce administrative burdens.

CASE STUDY: IMPROVING DATA TRANSPARENCY AND PARTNERSHIP

Fort Collins, Colorado, identified the need to improve the accuracy, timeliness, and quality of crash data. This helps planners, engineers, and policymakers make better decisions about resource allocation and facility design. Data on the locations of severe crashes will help in prioritizing, implementing, and evaluating projects that support Vision Zero. Around the country this has taken many forms. Some law enforcement agencies will periodically hold refresher trainings about traffic crash coding to help improve the quality of data. The Chief of Police in Troy, Alabama (the first Vision Zero city in Alabama), reviewed common errors and field entry mistakes that lead to unusable data and is focusing on improving data recording in those areas. Others have invested in technology such as LIDAR and unmanned aerial vehicles (UAV) to more quickly and accurately record the scene during crash investigations; this has the dual effect of improving the available data for review as well as more quickly reopening the roadway after a crash to minimize the impact on other drivers and reduce secondary crashes. Communities may also look at having fatal crash reviews where law enforcement, engineers, planners, and maintenance staff meet after a fatal crash occurs to discuss the circumstances, lines of communication, and identify if any immediate corrective action needs to be implemented at the location (or at similar locations) such as vegetation maintenance to improve sight distance, adjusting or installing signs, or similar improvements.

Vision Zero Adoption: Communities that have adopted Vision Zero goals have stronger grant applications and align with SS4A eligibility. The EPMPO can encourage jurisdictions to adopt Vision Zero goals and provide model Vision Zero resolutions and ordinances for cities and counties. As the City of El Paso had an adopted Vision Zero ordinance, the EPMPO could facilitate peer learning between El Paso and smaller jurisdictions.

Legislative Advocacy Coordination: Moving the needle with safety action requires additional funding at multiple levels. The EPMPO can help to build a regional coalition to advocate for enabling legislation in Texas and New Mexico. As a regional entity, the EPMPO can present unified data and case studies to state legislators showing regional need and potential impact.

Planning Policy Review: A review of municipal standards and policies that currently prioritize vehicular capacity and speed to determine if they may be modified to similarly consider safety for all users including pedestrians and bicyclists. Changes to state laws or federal requirements (such as updates to the Manual on Uniform Traffic Control Devices) may necessitate updates and are an opportunity to strengthen local requirements.

TRACKING PROGRESS

EPMPO has developed this plan with full recognition of the leadership position it plays in assisting the region meet the vision of zero traffic fatalities. That leadership was underscored by the TPB's formal adoption of the goals and targets of this safety plan and the Regional Vision Zero Policy on November x, 2025. The text of this resolution can be found in Appendix H. The MPO and the region

will be accountable for the success of the plan by evaluating performance of meeting the identified goals and objectives.

Performance Measures

As part of the Safe System Approach, the MPO is required to set performance targets that demonstrate progress towards meeting the goals, objectives, and overall vision of the BSMP. To track this progress, the MPO has prepared performance measures that elevate and support both regional and local projects based on the prioritized safety needs, as identified in Chapter 6 of this Plan, and that are aligned with meeting the Goals and Objectives of this Plan, as identified in Chapter 2. The performance measures serve as the "what" the MPO will measure. Figure 44 illustrates the MPO's performance measures, which will be reviewed and reported on an annual basis.

One year after they began implementing their Vision Zero plan, Seattle, Washington, noted a 15% reduction in overall crashes and a 30% reduction in injury crashes. After redesigning Rainier Avenue South, the corridor saw a 40% reduction in pedestrian and bicycle crashes.

Figure 45. Plan Performance Measures.

SAFETY

Number of Fatalities

Rate of Fatalities

Number of Serious Injuries

Rate of Serious Injuries

Number of non-motorized fatalities and Serious Injuries

Number of Traffic Calming focused projects implemented

ACCESSIBILITY

Miles of gaps in sidewalk network

Average number of jobs within 20 minutes by travel mode

Transportation costs as a percentage of household income

Population within 1/4 mile of transit service, pedestrian network, schools, community centers, and social services

Percentage of ADA accessible transit stops

Number of safety improvements installed along the HIN and HRN

ULTURE

Number of outreach events

Number of outreach events coordinated with emergency response services, public schools, and departments of transportation

Number of outreach materials developed and shared

Number of attendees at outreach events

Number of collaborative events with community groups, stakeholders, partner agencies to solicit input on planned projects to promote roadway safety

MPLEMENTATION

Develop, monitor, and update a Crash Data and Reporting Dashboard

Number of locations planned, begun, or improved throughout the region which include proven safety countermeasures

Number of adaptive signal technologies implemented

Crash Reduction Targets

The plan's safety goal has the objective to reduce fatal and serious injury roadway crashes by 50% in 2035 and to eliminate all fatalities and serious injuries on the region's roadways by 2050. To reach that safety goal, EPMPO commits to a year-over-year crash reduction target of 4.41% and 12.87% for fatal and serious injury crashes, respectively. Table 27 provides the basis for the reduction targets.

Table 27. Crash Reduction Targets

Crash Type	Crash Count 5 Year Average (Year 2019 to 2023)	2035 Target		2050 Target 100% Reduction	
		50% Reduction Target	Annual Reductions Target (crashes / year)	100% Reduction Target	Annual Reductions Target (crashes / year)
Fatal Injury	88.2	44.1	-4.41	0	-2.94
Serious Injury	257.4	128.7	-12.87	0	-8.58

The crash reduction targets identified in Table 27 were established using a baseline average of fatal and serious injury crashes from 2019 to 2023. This methodology calculates the five-year average for fatal injuries (88.2 crashes per year) and serious injuries (257.4 crashes per year). Next, the two crash reduction milestones are calculated: a 50% reduction in these crashes by 2035 and a complete elimination—zero crashes—by 2050. This translates to a reduction of fatal crashes by 2035 to 44.1 and serious injury crashes to 128.7.

An average annual reduction value is then calculated. The targeted annual decrease to reach the two milestones is a reduction of 4.41 fatal crashes between now and 2035 and a reduction of 2.94 fatal crashes between 2035 and 2050. An annual reduction of 12.87 serious injury crashes per year between 2025 and 2035 and a reduction of 8.58 serious injury crashes between 2035 and 2050.

These annual targets serve as benchmarks to evaluate year-over-year progress and to help provide guidance for implementation efforts by stakeholders.

Monitoring Tools

Building off the performance measures, EPMPO has identified a series of monitoring tools to track progress, measures of effectiveness, and the accountability of recommended actions that stem from this BSMP. The monitoring tools serve as the "how" for which EPMPO will monitor progress.

VISION ZERO DASHBOARD

A Vision Zero Dashboard is an online tool that people can use to check the status of traffic fatalities and serious injuries. There should be comparisons between the previous year's data and the current year's data. Other helpful metrics are total crashes, travel mode, demographics, and rates per 100,000. Additional helpful tools are crash data on an interactive map and tracking the implementation of the countermeasures proposed. A real-time dashboard that is easily accessible improves transparency and trust with the public and allows for greater accountability that progress is being achieved.

VISION ZERO COMMITTEE

To ensure continued leadership, commitment, and accountability to the BSMP, the EPMPO will build on the collaboration established with the Safety Coalition through a Vision Zero Committee. The committee is tasked with providing long-term oversight on implementing the vision, goals, and objectives of this plan towards zero fatalities and severe injuries. The committee is also responsible for evaluating the goals, objectives, and performance measures to ensure they continue to meet the region's ability to meet the plan's vision and goals. On September 8, 2025, EPMPO polled the Safety Coalition on whether they would be interested in continuing on as the Vision Zero Committee. Approximately x% of coalition members agreed. EPMPO will be working with existing Safety Coalition members as well as identifying new members moving forward.

Reporting Progress

The EPMPO will produce an annual progress report that evaluates the region's progress toward the identified vision, goals, and objectives. The report will provide statistics related to the performance measures, stakeholder implementation updates, new funding opportunities, MPO funding of safety-related projects, and a report from the Vision Zero Committee. The report will be made publicly available and presented to TPB and TPAC.

CONTINUOUS IMPROVEMENT

From the date of adoption, the Safe Mobility Plan EPMPO commits to reviewing and revising the goals, objectives, and implementation actions as steps towards updating the Plan every five years. The updates will ensure the data analysis is up to date and is reflective of the evolving policies, programs, and community needs within the El Paso region. The update will be an opportunity to renew partnerships, generate public engagement on safety, and reinforce the commitment to improving safety.